Responsive image
博碩士論文 etd-0709118-165712 詳細資訊
Title page for etd-0709118-165712
論文名稱
Title
製備金屬-有機骨架材料處理六價鉻污染之地下水:機制及效益評估
Mechanisms and effectiveness assessment of metal-organic framework materials for hexavalent chromium-contaminated groundwater remediation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-24
繳交日期
Date of Submission
2018-08-09
關鍵字
Keywords
吸附、六價鉻、沸石咪唑骨架材料、金屬 -有機骨架
metal–organic framework, zeolitic imidazolate framework, adsorption, hexavalent chromium
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
土壤地下水污染普遍存在重金屬污染,而重金屬中六價鉻具有高水溶性、高毒性、不易被分解及生物累積性,進入生物體內透過食物鏈及生物累積,可能對環境及人體健康構成嚴重威脅。金屬-有機骨架(Metal–organic frameworks, MOFs)材料是近年受到關注的新型奈米微孔結晶材料,在各類型MOFs中,多孔結晶結構的沸石咪唑酸酯骨架(Zeolitic imidazolate frameworks, ZIFs)因擁有較好的熱、水熱及化學穩定性,在工業應用上逐漸受到重視。本研究係由實驗室自行合成之沸石咪唑骨架材料(Zeolitic imidazolate frameworks-8, ZIF-8),探討分散條件、酸鹼值、吸附材用量及初始濃度變化等因素、評估ZIF-8對水體中六價鉻的吸附去除效率與影響,研究亦利用結構化學特性及陰離子交換特性,將六價鉻從水體中移除,並進行貴儀特性分析。研究發現,從不同分散方式的批次試驗中,利用超音波震盪方式可以使ZIF-8顆粒較分散,增加ZIF-8與六價鉻活性位點及接觸面積,進而提升去除效率。而在水解穩定性試驗中可發現,ZIF-8顆粒在7天內結構不會被破壞且適合酸鹼值pH 5.0-11.0範圍之間,具有良好的穩定性。由本研究之結果證實,ZIF-8移除六價鉻之機制包含:吸附、沉澱及還原作用(氧-羥基基團與六價鉻進行電子轉移);由反應動力學模擬發現本研究符合擬二階速率方程式及符合Langmuir模型,ZIF-8對六價鉻吸附機制較符合化學鍵結吸附;透過X射線光電子能譜儀分析吸附機制表明吸附涉及靜電作用、氫鍵和化學還原過程。綜上所述,研究利用ZIF-8及Zn/Co ZIF處理水中之最大單位移除量分別為39.41 mg/g及46.06 mg/g,其反應過程能調節六價鉻廢水(100 mg/L)酸鹼值由pH 5.13上升至7.45-8.09,顯示ZIFs於水體中能提高OH-濃度,未來若結合生物整治技術,藉由鉻還原菌提高六價鉻廢水鉻之移除能力、利用ZIFs協助處理部分六價鉻及維持水體酸鹼值創造適合微生物生長環境,發展ZIFs應用於地下水整治仍具有潛力。
Abstract
Hexavalent chromium has low water solubility, high toxicity, and high persistence with bioaccumulation effect. Metal–organic frameworks (MOFs) is the novel nanoporous crystalline material. Compared to other MOFs, zeolitic imidazolate frameworks (ZIFs) have better heat, hydrothermal, and chemical stability. In this study, ZIF-8 was synthesized and tested for its applicability on the treatment of hexavalent chromium contained water via the adsorption mechanisms. In the batch experiments, the tested control factors included dispersion conditions, pH value, amount of adsorbent, and initial concentration. ZIF-8 particles were prepared using ultrasonic vibration method to increase the contact sites and contact areas to improve the removal efficiency. In the hydrolytic stability test, the structure of ZIF-8 was not destroyed within 14 days and had good stability under varied pH conditions (pH 5 to 11). The adsorption behaviors could be effectively simulated using the pseudo-second-order model and Langmuir isotherm model. Results indicate that the adsorption process was the major mechanism for hexavalent chromium removal by ZIF-8. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS) analysis. The results indicate that the adsorption was related to electrostatic interaction, hydrogen bonding, and chemical reducing process. Results from this study show that ZIF-8 is a simple, convenient, and low-cost absorbent material for separating hexavalent chromium from water.
目次 Table of Contents
論文審定書 i
論文授權書 ii
謝誌 iii
中文摘要 iv
Abstract v
表目錄 ix
圖目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 台灣土壤地下水污染現況及重金屬污染概況 4
2.2 污染物定義及特性 8
2.2.1 鉻的性質與危害 8
2.2.2 環境中鉻的型態與現行污染管制 11
2.3 去除水中六價鉻污染之相關研究 12
2.4 六價鉻的吸附處理 14
2.4.1 吸附作用的種類 15
2.4.2 吸附理論 16
2.4.3 等溫吸附曲線 17
2.4.4 等溫吸附模式 19
2.4.5 吸附動力學模式 24
2.4.6 影響吸附因素 25
2.4.7 用於去除六價鉻污染之吸附材料 27
2.5 金屬-有機骨架(Metal–organic frameworks, MOFs) 28
2.5.1 MOFs在環境上的吸附應用 29
2.5.2 有機配位體介紹 30
2.5.3 沸石咪唑酸酯骨架(Zeolitic imidazolate frameworks, ZIFs) 31
第三章 研究與方法 33
3.1 研究架構 33
3.2 研究流程 34
3.2.1 ZIF-8合成及特徵分析 34
3.2.2 水解穩定性試驗 36
3.2.3 六價鉻吸附批次試驗 36
3.2.4 ZIF-8再生及再利用試驗 37
3.3 實驗材料與設備 39
3.3.1 實驗藥品 39
3.3.2 實驗儀器 40
3.4 實驗分析儀器 40
3.4.1 環境掃描式電子顯微鏡 40
3.4.2 X光繞射儀 41
3.4.3 比表面積分析儀 42
3.4.4 X射線光電子能譜儀 43
3.4.5 傅立葉紅外線光譜儀 43
3.5 污染物分析 44
3.5.1 水中六價鉻檢測方法─比色法 44
3.5.2 水中金屬及微量元素檢測方法─感應耦合電漿原子發射光譜法 44
第四章 結果與討論 45
4.1 ZIF-8基本特性及特徵分析 45
4.1.1 合成試驗 45
4.1.2 晶體結構及形態特徵 47
4.1.3 比表面積分析(Specific surface area) 53
4.1.4 等溫吸附曲線及模式探討 54
4.1.5 表面元素分析 60
4.1.6 水解穩定性試驗 63
4.2 ZIF-8處理六價鉻污染批次實驗 66
4.2.1 不同分散條件之影響 67
4.2.2 初始酸鹼值之影響 68
4.2.3 吸附材用量的影響 72
4.2.4 不同初始濃度之影響 74
4.2.5 ZIF-8與Zn/Co ZIFs對六價鉻吸附之比較 78
4.3 ZIF-8再生及再利用試驗 80
4.3.1不同脫附劑試驗 81
4.3.2 再利用試驗 82
第五章 結論與建議 83
5.1 結論 83
5.2 建議 84
參考文獻 85
參考文獻 References
Ai, L., Zhang, C., Li, L., Jiang, J., (2014) “Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation”, Applied Catalysis B: Environmental 148, 191-200.
Aoudj, S., Khelifa, A., Drouiche, N., Belkada, R., Miroud, D., (2015) “Simultaneous removal of chromium (VI) and fluoride by electrocoagulation–electroflotation: application of a hybrid Fe-Al anode”, Chemical Engineering Journal 267, 153-162.
Ayati, A., Shahrak, M.N., Tanhaei, B., Sillanpää, M., (2016) “Emerging adsorptive removal of azo dye by metal–organic frameworks”, Chemosphere 160, 30-44.
Bai, Z.-Q., Yuan, L.-Y., Zhu, L., Liu, Z.-R., Chu, S.-Q., Zheng, L.-R., Zhang, J., Chai, Z.-F., Shi, W.-Q., (2015) “Introduction of amino groups into acid-resistant MOFs for enhanced U (VI) sorption”, Journal of Materials Chemistry A 3, 525-534.
Bakhtiari, N., Azizian, S., (2015) “Adsorption of copper ion from aqueous solution by nanoporous MOF-5: a kinetic and equilibrium study”, Journal of Molecular Liquids 206, 114-118.
Barakat, M., (2011) “New trends in removing heavy metals from industrial wastewater”, Arabian Journal of Chemistry 4, 361-377.
Barrera-Díaz, C., Palomar-Pardavé, M., Romero-Romo, M., Martinez, S., (2003) “Chemical and electrochemical considerations on the removal process of hexavalent chromium from aqueous media”, Journal of Applied Electrochemistry 33, 61-71.
Barrera-Díaz, C.E., Lugo-Lugo, V., Bilyeu, B., (2012) “A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction”, Journal of Hazardous Materials 223, 1-12.
Boffetta, P., 1993. Carcinogenicity of trace elements with reference to evaluations made by the International Agency for Research on Cancer. Scandinavian journal of work, environment & health, 67-70.
Brozek, C., Dincă, M., (2014) “Cation exchange at the secondary building units of metal–organic frameworks”, Chemical Society Reviews 43, 5456-5467.
Chao, H.-P., Lee, C.-K., Juang, L.-C., Han, Y.-L., (2013) “Sorption of organic compounds, oxyanions, and heavy metal ions on surfactant modified titanate nanotubes”, Industrial & Engineering Chemistry Research 52, 9843-9850.
Chebeir, M., (2017) “Occurrence and Transformation of Chromium in Drinking Water Distribution Systems”, UC Riverside.
Chen, B., Wang, X., Zhang, Q., Xi, X., Cai, J., Qi, H., Shi, S., Wang, J., Yuan, D., Fang, M., (2010) “Synthesis and characterization of the interpenetrated MOF-5”, Journal of Materials Chemistry 20, 3758-3767.
Chen, L.-F., Liang, H.-W., Lu, Y., Cui, C.-H., Yu, S.-H., (2011) “Synthesis of an attapulgite clay@ carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water”, Langmuir 27, 8998-9004.
Chen, Y., Xu, H., Wang, S., Kang, L., (2014) “Removal of Cr (VI) from water using polypyrrole/attapulgite core–shell nanocomposites: equilibrium, thermodynamics and kinetics”, RSC Advances 4, 17805-17811.
Cheng, W., Ding, C., Wang, X., Wu, Z., Sun, Y., Yu, S., Hayat, T., Wang, X., (2016) “Competitive sorption of As (V) and Cr (VI) on carbonaceous nanofibers”, Chemical Engineering Journal 293, 311-318.
Chiou, M.-S., Li, H.-Y., (2002) “Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads”, Journal of Hazardous Materials 93, 233-248.
Cho, H.-Y., Kim, J., Kim, S.-N., Ahn, W.-S., (2013) “High yield 1-L scale synthesis of ZIF-8 via a sonochemical route”, Microporous and Mesoporous Materials 169, 180-184.
Choppala, G., Bolan, N., Mallavarapu, M., Chen, Z., (2010) “Sorption and mobility of chromium species in a range of soil types”, Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 3.5. 1 Heavy metal contaminated soils. International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur, pp. 239-241.
Ciopec, M., Davidescu, C.M., Negrea, A., Grozav, I., Lupa, L., Negrea, P., Popa, A., (2012) “Adsorption studies of Cr (III) ions from aqueous solutions by DEHPA impregnated onto Amberlite XAD7–Factorial design analysis”, Chemical Engineering Research and Design 90, 1660-1670.
Coudert, F.X., (2017) “Molecular Mechanism of Swing Effect in Zeolitic Imidazolate Framework ZIF‐8: Continuous Deformation upon Adsorption”, ChemPhysChem 18, 2732-2738.
Cravillon, J., Schröder, C.A., Bux, H., Rothkirch, A., Caro, J., Wiebcke, M., 2012. Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm 14, 492-498.
Dai, J., Ren, F., Tao, C., (2012) “Adsorption of Cr (VI) and speciation of Cr (VI) and Cr (III) in aqueous solutions using chemically modified chitosan”, International Journal of Environmental Research and Public Health 9, 1757-1770.
DeCoste, J.B., Peterson, G.W., (2014) “Metal–organic frameworks for air purification of toxic chemicals”, Chemical reviews 114, 5695-5727.
Deshpande, K., Cheung, S., Rao, M.S., Dave, B.C., (2005) “Efficient sequestration and reduction of hexavalent chromium with organosilica sol–gels”, Journal of Materials Chemistry 15, 2997-3004.
Dhakshinamoorthy, A., Asiri, A.M., Garcia, H., (2015) “Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions”, Chemical Society Reviews 44, 1922-1947.
Dima, J.B., Sequeiros, C., Zaritzky, N.E., (2015) “Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes”, Chemosphere 141, 100-111.
Ding, C., Cheng, W., Sun, Y., Wang, X., (2015) “Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides”, Journal of hazardous materials 295, 127-137.
Ding, Y., Xu, Y., Ding, B., Li, Z., Xie, F., Zhang, F., Wang, H., Liu, J., Wang, X., (2017) “Structure induced selective adsorption performance of ZIF-8 nanocrystals in water”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 520, 661-667.
Duan, X., Liu, W., Chang, L., (2016) “Porous carbon prepared by using ZIF-8 as precursor for capacitive deionization”, Journal of the Taiwan Institute of Chemical Engineers 62, 132-139.
El-Taweel, Y.A., Nassef, E.M., Elkheriany, I., Sayed, D., (2015) “Removal of Cr (VI) ions from waste water by electrocoagulation using iron electrode”, Egyptian journal of Petroleum 24, 183-192.
Everett, D., 1972. " IUPAC Manual of Symbols and Terminology", appendix 2, Part 1, Colloid and Surface Chemistry. Pure Appl. Chem. 31, 578-621. 
Farha, O.K., Hupp, J.T., (2010) “Rational design, synthesis, purification, and activation of metal− organic framework materials”, Accounts of chemical research 43, 1166-1175.
Fei, H., Bresler, M.R., Oliver, S.R., (2011) “A new paradigm for anion trapping in high capacity and selectivity: crystal-to-crystal transformation of cationic materials”, Journal of the American Chemical Society 133, 11110-11113.
Finch,L.E., Hillyer, M.M., Leopold, M.C., (2015) “Quantitative analysis of heavy metals in children’s toys and jewelry: a multi-instrument, multitechnique exercise in analytical chemistry and public health”, Journal of Chemical Education 92, 849-854.
Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M., (2013) “The chemistry and applications of metal-organic frameworks”, Science 341, 1230444.
Ge, S., Zhou, M., Dong, X., Lu, Y., Ge, S., (2013) “Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation”, Applied microbiology and biotechnology 97, 2131-2137.
Gonzalez, C., Ackerley, D., Park, C., Matin, A., (2003) “A soluble flavoprotein contributes to chromate reduction and tolerance by Pseudomonas putida”, Engineering in Life Sciences 23, 233-239.
Gu, H., Rapole, S.B., Huang, Y., Cao, D., Luo, Z., Wei, S., Guo, Z., (2013) “Synergistic interactions between multi-walled carbon nanotubes and toxic hexavalent chromium”, Journal of Materials Chemistry A 1, 2011-2021.
Gupta, V.K., Chandra, R., Tyagi, I., Verma, M., (2016), “Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications”, Journal of colloid and interface science 478, 54-62.
Haque, E., Lee, J.E., Jang, I.T., Hwang, Y.K., Chang, J.-S., Jegal, J., Jhung, S.H., (2010) “Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates”, Journal of hazardous materials 181, 535-542.
Hasan, Z., Jhung, S.H., (2015) “Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions”, Journal of hazardous materials 283, 329-339.
Hashemi, B., Zohrabi, P., Raza, N., Kim, K.-H., (2017) “Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media”, TrAC Trends in Analytical Chemistry 97, 65-82.
He, M., Yao, J., Liu, Q., Wang, K., Chen, F., Wang, H., (2014) “Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution”, Microporous and Mesoporous Materials 184, 55-60.
Hertäg, L., Bux, H., Caro, J., Chmelik, C., Remsungnen, T., Knauth, M., Fritzsche, S., (2011) “Diffusion of CH4 and H2 in ZIF-8”, Journal of membrane science 377, 36-41.
Huang, D., Wang, G., Shi, Z., Li, Z., Kang, F., Liu, F., (2017) “Removal of hexavalent chromium in natural groundwater using activated carbon and cast iron combined system”, Journal of Cleaner Production 165, 667-676.
Huang, H., Yin, Q., (2011) “Fundamentals and Application Advances in Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)”, Journal of the Graduates Sun Yat-Sen University (Natural Sciences, Medicine) 1, 006.
Huang, X.C., Lin, Y.Y., Zhang, J.P., Chen, X.M., (2006) “Ligand‐Directed Strategy for Zeolite‐Type Metal–Organic Frameworks: Zinc (II) Imidazolates with Unusual Zeolitic Topologies”, Angewandte Chemie 118, 1587-1589.
Jacobs, B.W., Houk, R.J., Anstey, M.R., House, S.D., Robertson, I.M., Talin, A.A., Allendorf, M.D., (2011) “Ordered metal nanostructure self-assembly using metal–organic frameworks as templates”, Chemical Science 2, 411-416.
James, J.B., Lin, Y., (2016) “Kinetics of ZIF-8 thermal decomposition in inert, oxidizing, and reducing environments”, The Journal of Physical Chemistry C 120, 14015-14026.
Jian, M., Liu, B., Zhang, G., Liu, R., Zhang, X., (2015) “Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8 (ZIF-8) nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 465, 67-76.
Jiang, J.-Q., Yang, C.-X., Yan, X.-P., (2013) “Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution”, ACS applied materials & interfaces 5, 9837-9842.
Jobby, R., Jha, P., Yadav, A.K., Desai, N., (2018) “Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review”, Chemosphere 207, 255-266.
Jung, B.K., Jun, J.W., Hasan, Z., Jhung, S.H., (2015) “Adsorptive removal of p-arsanilic acid from water using mesoporous zeolitic imidazolate framework-8”, Chemical Engineering Journal 267, 9-15.
Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T., Tünay, O., (2012) “Electrocoagulation applications for industrial wastewaters: a critical review”, Environmental Technology Reviews 1, 2-45.
Kano, N., Tanabe, K., Pang, M., Deng, Y., Imaizumi, H., (2014) “Biosorption of chromium from aqueous solution using chitosan”, J. Chem. Chem. Eng 8, 1049-1058.
Katayev, E.A., Ustynyuk, Y.A., Sessler, J.L., (2006) “Receptors for tetrahedral oxyanions”, Coordination chemistry reviews 250, 3004-3037.
Kazakis, N., Kantiranis, N., Voudouris, K., Mitrakas, M., Kaprara, E., Pavlou, A., (2015) “Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater”, Science of the Total Environment 514, 224-238.
Ke, F., Qiu, L.-G., Yuan, Y.-P., Peng, F.-M., Jiang, X., Xie, A.-J., Shen, Y.-H., Zhu, J.-F., (2011) “Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water”, Journal of hazardous materials 196, 36-43.
Kent, C.A., Liu, D., Meyer, T.J., Lin, W., (2012) “Amplified luminescence quenching of phosphorescent metal–organic frameworks”, Journal of the American Chemical Society 134, 3991-3994.
Kera, N.H., Bhaumik, M., Ballav, N., Pillay, K., Ray, S.S., Maity, A., (2016) “Selective removal of Cr (VI) from aqueous solution by polypyrrole/2, 5-diaminobenzene sulfonic acid composite”, Journal of colloid and interface science 476, 144-157.
Khan, N.A., Hasan, Z., Jhung, S.H., (2013) “Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review”, Journal of hazardous materials 244, 444-456.
Khan, N.A., Jung, B.K., Hasan, Z., Jhung, S.H., (2015) “Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks”, Journal of hazardous materials 282, 194-200.
Khare, P., Yadav, A., Ramkumar, J., Verma, N., (2016) “Microchannel-embedded metal–carbon–polymer nanocomposite as a novel support for chitosan for efficient removal of hexavalent chromium from water under dynamic conditions”, Chemical Engineering Journal 293, 44-54.
Khay, I., Chaplais, G., Nouali, H., Marichal, C., Patarin, J., (2015) “Water intrusion–extrusion experiments in ZIF-8: impacts of the shape and particle size on the energetic performances”, RSC Advances 5, 31514-31518.
Kobielska, P.A., Howarth, A.J., Farha, O.K., Nayak, S., (2018) “Metal–organic frameworks for heavy metal removal from water”, Coordination Chemistry Reviews 358, 92-107.
Kotaś, J., Stasicka, Z., (2000) “Chromium occurrence in the environment and methods of its speciation”, Environmental pollution 107, 263-283.
Kruk, M., Jaroniec, M., (2001) “Gas adsorption characterization of ordered organic− inorganic nanocomposite materials”, Chemistry of Materials 13, 3169-3183.
Kumar, M., Pal, A., Singh, J., Garg, S., Bala, M., Vyas, A., Khasa, Y.P., Pachouri, U.C., (2013) “Removal of chromium from water effluent by adsorption onto Vetiveria zizanioides and Anabaena species”, Natural Science 5, 341.
Lee, H.J., Cho, W., Jung, S., Oh, M., (2009a) “Morphology‐Selective Formation and Morphology‐Dependent Gas‐Adsorption Properties of Coordination Polymer Particles”, Advanced Materials 21, 674-677.
Lee, Y.-R., Jang, M.-S., Cho, H.-Y., Kwon, H.-J., Kim, S., Ahn, W.-S., (2015) “ZIF-8: A comparison of synthesis methods”, Chemical Engineering Journal 271, 276-280.
Lewicki, S., Zdanowski, R., Krzyzowska, M., Lewicka, A., Debski, B., Niemcewicz, M., Goniewicz, M., (2014) “The role of Chromium III in the organism and its possible use in diabetes and obesity treatment”, Annals of Agricultural and Environmental Medicine 21.
Li, G., Lan, J., Liu, J., Jiang, G., (2013a) “Synergistic adsorption of As (V) from aqueous solution onto mesoporous silica decorated orderly with Al2O3 and Fe2O3 nanoparticles”, Journal of colloid and interface science 405, 164-170.
Li, J.-R., Sculley, J., Zhou, H.-C., (2011) “Metal–organic frameworks for separations”, Chemical reviews 112, 869-932.
Li, J., Wu, Y.-n., Li, Z., Zhang, B., Zhu, M., Hu, X., Zhang, Y., Li, F., (2014) “Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water”, The Journal of Physical Chemistry C 118, 27382-27387.
Li, K., Olson, D.H., Seidel, J., Emge, T.J., Gong, H., Zeng, H., Li, J., (2009b) “Zeolitic imidazolate frameworks for kinetic separation of propane and propene”, Journal of the American Chemical Society 131, 10368-10369.
Li, K., Wang, Q.D., Yana Wei, H.L., Qiana Zhao, F., 2012. Characteristic and mechanism of Cr (Ⅵ) biosorption by buckwheat hull from aqueous solutions. Acta Chimica Sinica 7, 016.
Li, L.-L., Feng, X.-Q., Han, R.-P., Zang, S.-Q., Yang, G., (2017) “Cr (VI) removal via anion exchange on a silver-triazolate MOF”, Journal of hazardous materials 321, 622-628.
Li, X., Gao, X., Ai, L., Jiang, J., (2015) “Mechanistic insight into the interaction and adsorption of Cr (VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution”, Chemical Engineering Journal 274, 238-246.
Li, X., Xu, H., Kong, F., Wang, R., (2013b) “A Cationic Metal–Organic Framework Consisting of Nanoscale Cages: Capture, Separation, and Luminescent Probing of Cr2O72− through a Single‐Crystal to Single‐Crystal Process”, Angewandte Chemie International Edition 52, 13769-13773.
Li, Y.S., Liang, F.Y., Bux, H., Feldhoff, A., Yang, W.S., Caro, J., (2010) “Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity”, Angewandte Chemie 122, 558-561.
Lin, K.-Y.A., Chang, H.-A., (2015) “Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water”, Chemosphere 139, 624-631.
Lin, K.-Y.A., Lee, W.-D., (2016) “Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole”, Chemical Engineering Journal 284, 1017-1027.
Lin, S., Wei, W., Wu, X., Zhou, T., Mao, J., Yun, Y.-S., (2015) “Selective recovery of Pd (II) from extremely acidic solution using ion-imprinted chitosan fiber: adsorption performance and mechanisms”, Journal of hazardous materials 299, 10-17.
Lin, Z.-J., Zheng, H.-Q., Zheng, H.-Y., Lin, L.-P., Xin, Q., Cao, R., (2017) “Efficient Capture and Effective Sensing of Cr2O72– from Water Using a Zirconium Metal–Organic Framework”, Inorganic chemistry 56, 14178-14188.
Liu, X., Jin, H., Li, Y., Bux, H., Hu, Z., Ban, Y., Yang, W., (2013) “Metal–organic framework ZIF-8 nanocomposite membrane for efficient recovery of furfural via pervaporation and vapor permeation”, Journal of membrane science 428, 498-506.
Liu, X., Li, J., Wang, X., Chen, C., Wang, X., (2015) “High performance of phosphate-functionalized graphene oxide for the selective adsorption of U (VI) from acidic solution”, Journal of Nuclear Materials 466, 56-64.
Lytras, G., Lytras, C., Argyropoulou, D., Dimopoulos, N., Malavetas, G., Lyberatos, G., (2017) “A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater”, Journal of hazardous materials 336, 41-51.
Madhavi, V., Reddy, A.V.B., Reddy, K.G., Madhavi, G., Prasad, T., (2013) “An overview on research trends in remediation of chromium”, Research Journal of Recent Sciences ISSN 2277, 2502.
Mamais, D., Noutsopoulos, C., Kavallari, I., Nyktari, E., Kaldis, A., Panousi, E., Nikitopoulos, G., Antoniou, K., Nasioka, M., (2016) “Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations”, Chemosphere 152, 238-244.
Manning, A.H., Mills, C.T., Morrison, J.M., Ball, L.B., (2015) “Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA”, Applied Geochemistry 62, 186-199.
Martín-Domínguez, A., Rivera-Huerta, M.d.L., Pérez-Castrejón, S., Garrido-Hoyos, S.E., Villegas-Mendoza, I.E., Gelover-Santiago, S.L., Drogui, P., Buelna, G., (2018) “Chromium removal from drinking water by redox-assisted coagulation: Chemical versus electrocoagulation”, Separation and Purification Technology 200, 266-272.
Mousavi, H.Z., Seyedi, S., (2011) “Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater”, International Journal of Environmental Science & Technology 8, 195-202.
Mthombeni, N.H., Onyango, M.S., Aoyi, O., (2015) “Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite”, Journal of the Taiwan Institute of Chemical Engineers 50, 242-251.
Nandi, R., Laskar, S., Saha, B., (2017) “Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae”, Research on Chemical Intermediates 43, 1619-1634.
Nesham, D.O., Ivarson, K.A., Hanson, J.P., Miller, C.W., Meyers, P., Jaschke, N.M., (2014) “Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford”, Hanford Site (HNF).
Nguyen, N.T., Lo, T.N., Kim, J., Nguyen, H.T., Le, T.B., Cordova, K.E., Furukawa, H., (2016) “Mixed-Metal Zeolitic Imidazolate Frameworks and their Selective Capture of Wet Carbon Dioxide over Methane”, Inorganic chemistry 55, 6201-6207.
Pan, Y., Li, Z., Zhang, Z., Tong, X.-S., Li, H., Jia, C.-Z., Liu, B., Sun, C.-Y., Yang, L.-Y., Chen, G.-J., (2016) “Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67”, Journal of environmental management 169, 167-173.
Pan, Y., Liu, Y., Zeng, G., Zhao, L., Lai, Z., (2011) “Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system”, Chemical Communications 47, 2071-2073.
Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M., (2006) “Exceptional chemical and thermal stability of zeolitic imidazolate frameworks”, Proceedings of the National Academy of Sciences 103, 10186-10191.
Phan, A., Doonan, C.J., Uribe-Romo, F.J., Knobler, C.B., O’keeffe, M., Yaghi, O.M., (2010) “Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks”, Acc. Chem. Res 43, 58-67.
Pradeep, T., (2009) “Noble metal nanoparticles for water purification: a critical review”, Thin solid films 517, 6441-6478.
Pradhan, D., Sukla, L.B., Sawyer, M., Rahman, P.K., (2017) “Recent bioreduction of hexavalent chromium in wastewater treatment: A review”, Journal of Industrial and Engineering Chemistry 55, 1-20.
Qin, Q., Wang, Q., Fu, D., Ma, J., (2011) “An efficient approach for Pb (II) and Cd (II) removal using manganese dioxide formed in situ”, Chemical Engineering Journal 172, 68-74.
Ragab, D., Gomaa, H., Sabouni, R., Salem, M., Ren, M., Zhu, J., (2016) “Micropollutants removal from water using microfiltration membrane modified with ZIF-8 metal organic frameworks (MOFs)”, Chemical Engineering Journal 300, 273-279.
Ranieri, E., Gikas, P., (2014) “Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil”, Water, Air, & Soil Pollution 225, 1981.
Ren, J., Li, N., Zhao, L., (2012) “Adsorptive removal of Cr (VI) from water by anion exchanger based nanosized ferric oxyhydroxide hybrid adsorbent”, Chemical and biochemical engineering quarterly 26, 111-118.
Ren, Z., Xu, X., Wang, X., Gao, B., Yue, Q., Song, W., Zhang, L., Wang, H., (2016) “FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr (VI) removal by amine cross-linking biosorbent”, Journal of colloid and interface science 468, 313-323.
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., Rashid, M.I., (2017) “Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review”, Chemosphere 178, 513-533.
Shahrak, M.N., Ghahramaninezhad, M., Eydifarash, M., (2017) “Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr (VI) ions from aqueous solution”, Environmental Science and Pollution Research 24, 9624-9634.
Shen, C., Chen, H., Wu, S., Wen, Y., Li, L., Jiang, Z., Li, M., Liu, W., (2013) “Highly efficient detoxification of Cr (VI) by chitosan–Fe (III) complex: process and mechanism studies”, Journal of hazardous materials 244, 689-697.
Singh, S., Singh, A., (2012) “Treatment of water containg chromium (VI) using rice husk carbon as a newlow cost adsorbent”, International Journal of Environmental Research 6, 917-924.
Sirk, K.M., Saleh, N.B., Phenrat, T., Kim, H.-J., Dufour, B., Ok, J., Golas, P.L., Matyjaszewski, K., Lowry, G.V., Tilton, R.D., (2009) “Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models”, Environmental science & technology 43, 3803-3808.
Streat, M., (1995) " The Waters Were Made Sweet". “Advances in Ion Exchange Technology”, Industrial & engineering chemistry research 34, 2841-2848.
Sun, W., Zhai, X., Zhao, L., (2016) “Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions”, Chemical Engineering Journal 289, 59-64.
Takeno, N., (2005) “Atlas of Eh-pH diagrams”, Geological survey of Japan open file report 419, 102.
Tian, X., Wang, W., Tian, N., Zhou, C., Yang, C., Komarneni, S., (2016) “Cr (VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid”, Journal of hazardous materials 309, 151-156.
Toli, A., Chalastara, K., Mystrioti, C., Xenidis, A., Papassiopi, N., (2016) “Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr (VI) contaminated waters”, Environmental Pollution 214, 419-429.
Tsai, C.-W., Langner, E.H., (2016) “The effect of synthesis temperature on the particle size of nano-ZIF-8”, Microporous and Mesoporous Materials 221, 8-13.
Tseng, H.-H., Wang, C.-T., Zhuang, G.-L., Uchytil, P., Reznickova, J., Setnickova, K., (2016) “Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion”, Journal of Membrane Science 510, 391-404.
Tytłak, A., Oleszczuk, P., Dobrowolski, R., (2015) “Sorption and desorption of Cr (VI) ions from water by biochars in different environmental conditions”, Environmental Science and Pollution Research 22, 5985-5994.
Vardhan, H., Yusubov, M., Verpoort, F., (2016) “Self-assembled metal–organic polyhedra: An overview of various applications”, Coordination Chemistry Reviews 306, 171-194.
Veličković, Z., Vuković, G.D., Marinković, A.D., Moldovan, M.-S., Perić-Grujić, A.A., Uskoković, P.S., Ristić, M.Đ., (2012) “Adsorption of arsenate on iron (III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes”, Chemical Engineering Journal 181, 174-181.
Venna, S.R., Jasinski, J.B., Carreon, M.A., (2010) “Structural evolution of zeolitic imidazolate framework-8”, Journal of the American Chemical Society 132, 18030-18033.
Vimonses, V., Jin, B., Chow, C.W., (2010) “Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime”, Journal of hazardous materials 177, 420-427.
Wang, C., Yan, X., Hu, X., Zhou, M., Ni, Z., (2016a) “Metal-azolate framework-6 for fast adsorption removal of phthalic acid from aqueous solution”, Journal of Molecular Liquids 223, 427-430.
Wang, J.-W., Li, N.-X., Li, Z.-R., Wang, J.-R., Xu, X., Chen, C.-S., (2016b) “Preparation and gas separation properties of Zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers”, Ceramics International 42, 8949-8954.
Wang, L., Fang, M., Liu, J., He, J., Deng, L., Li, J., Lei, J., 2015. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Advances 5, 50942-50954.
Wang, S., Alekseev, E.V., Diwu, J., Casey, W.H., Phillips, B.L., Depmeier, W., Albrecht‐Schmitt, T.E., (2010) “NDTB‐1: A Supertetrahedral Cationic Framework That Removes TcO4− from Solution”, Angewandte Chemie International Edition 49, 1057-1060.
Wang, X., Liu, J., Leong, S., Lin, X., Wei, J., Kong, B., Xu, Y., Low, Z.-X., Yao, J., Wang, H., (2016c) “Rapid construction of ZnO@ ZIF-8 heterostructures with size-selective photocatalysis properties”, ACS applied materials & interfaces 8, 9080-9087.
Wang, Y., Xu, Y., Li, D., Liu, H., Li, X., Tao, S., Tian, Z., (2015) “Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism”, Chinese Journal of Catalysis 36, 855-865.
Whitesides, G.M., Grzybowski, B., (2002) “Self-assembly at all scales”, Science 295, 2418-2421.
Wu, C.-s., Xiong, Z.-h., Li, C., Zhang, J.-m., (2015) “Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution”, RSC Advances 5, 82127-82137.
Yang, W., Bai, Z.-Q., Shi, W.-Q., Yuan, L.-Y., Tian, T., Chai, Z.-F., Wang, H., Sun, Z.-M., (2013) “MOF-76: from a luminescent probe to highly efficient U VI sorption material. Chemical Communications 49, 10415-10417.
Yao, J., Dong, D., Li, D., He, L., Xu, G., Wang, H., (2011) “Contra-diffusion synthesis of ZIF-8 films on a polymer substrate”, Chemical Communications 47, 2559-2561.
Yao, Z., Du, S., Zhang, Y., Zhu, B., Zhu, L., John, A.E., (2015) “Positively charged membrane for removing low concentration Cr (VI) in ultrafiltration process”, Journal of Water Process Engineering 8, 99-107.
Zarshenas, K., Raisi, A., Aroujalian, A., (2016) “Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications”, Journal of Membrane Science 510, 270-283.
Zeng, L., Guo, X., He, C., Duan, C., (2016) “Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis”, ACS Catalysis 6, 7935-7947.
Zhang, K., Lively, R.P., Zhang, C., Chance, R.R., Koros, W.J., Sholl, D.S., Nair, S., (2013a) “Exploring the framework hydrophobicity and flexibility of ZIF-8: from biofuel recovery to hydrocarbon separations”, The Journal of Physical Chemistry Letters 4, 3618-3622.
Zhang, L., Qian, G., Liu, Z., Cui, Q., Wang, H., Yao, H., (2015a) “Adsorption and separation properties of n-pentane/isopentane on ZIF-8”, Separation and Purification Technology 156, 472-479.
Zhang, X., Li, X., Shao, C., Li, J., Zhang, M., Zhang, P., Wang, K., Lu, N., Liu, Y., (2013b) “One-dimensional hierarchical heterostructures of In2S3 nanosheets on electrospun TiO2 nanofibers with enhanced visible photocatalytic activity”, Journal of hazardous materials 260, 892-900.
Zhang, Y.-J., Ou, J.-L., Duan, Z.-K., Xing, Z.-J., Wang, Y., (2015b) “Adsorption of Cr (VI) on bamboo bark-based activated carbon in the absence and presence of humic acid”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 481, 108-116.
Zhang, Z., Yao, Z.-Z., Xiang, S., Chen, B., (2014) “Perspective of microporous metal–organic frameworks for CO2 capture and separation”, Energy & Environmental Science 7, 2868-2899.
Zhou, H.-C., Long, J.R., Yaghi, O.M., (2012) “Introduction to metal–organic frameworks”, ACS Publications.
Zhou, K., Mousavi, B., Luo, Z., Phatanasri, S., Chaemchuen, S., Verpoort, F., (2017) “Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67”, Journal of Materials Chemistry A 5, 952-957.
Zhou, W., Zou, B., Zhang, W., Tian, D., Huang, W., Huo, F., (2015) “Synthesis of stable heterogeneous catalysts by supporting carbon-stabilized palladium nanoparticles on MOFs”, Nanoscale 7, 8720-8724.
林麗娟,1994,X光繞射原理及其應用,X光材料分析技術與應用專題。
張立信,2012,表面化學分析技術,國家奈米元件實驗室奈米通訊。
許藝騰,2011,以奈米級零價鐵處理實廠含鉻電鍍廢水之研究,暨南大學土木工程學系學位論文。
陳俞君,2009,中孔洞複合材料之合成分析與對二氧化碳吸附之研究,國立交通大學材料科學與工程學系所碩士論文。
鄭佳容,2007,評估含Fe(II)及連二亞硫酸鈉之還原劑降低污染土壤六價鉻有效性之效果,臺灣大學農業化學研究所學位論文。
莊緯鵬,2014,商用椰纖維活性碳顆粒對吸附染料能力之研究,崑山科技大學材料工程系學生專題製作報告。
鄭添吉,2012,利用咖啡渣吸附水溶液中重金屬。
行政院環境保護署,2017,飲用水水質標準。
資源問題研究會,2009,世界資源真相和你想的不一樣。
石濤,2012,環境化學。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.41.214
論文開放下載的時間是 校外不公開

Your IP address is 18.221.41.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code