Responsive image
博碩士論文 etd-0710100-162205 詳細資訊
Title page for etd-0710100-162205
論文名稱
Title
溶液中高分子置外加電場下的分子動力模擬
Computer Simulation of a Polymer in Solvents under an External Electric Field
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor

口試委員
Advisory Committee
口試日期
Date of Exam
2000-05-26
繳交日期
Date of Submission
2000-07-10
關鍵字
Keywords
外加電場、高分子、分子動力模擬
molecular dynamics simulation, external electric field, polymer
統計
Statistics
本論文已被瀏覽 5688 次,被下載 1424
The thesis/dissertation has been browsed 5688 times, has been downloaded 1424 times.
中文摘要
高分子在溶液中,受到外加電場作用而影響其高分子的運動情形,在實驗上已陸續地被研究出;本篇論文則利用分子動力模擬方法,計算並探討類聚乙烯(PE-like)高分子在氯甲烷(methyl chloride)溶劑中,施以外加直流電場後,造成類聚乙烯運動改變的情形,並進一步瞭解其動力行為。計算系統包含一般溶液、稀釋溶液及低密度溶液,每個系統再分別對以下四種條件進行模擬,即非極性或極性高分子溶於極性或非極性溶劑,極性的變化係藉由改變高分子或溶劑本身的電荷分佈所構成。
藉由計算類聚氯乙烯的質心擴散係數,可以觀察其運動速率隨著外加電場強度的變化。一般而言,極性分子受外加電場作用,應增加分子的流動性(mobility),致使質心擴散係數隨著電場強度增大,然而比較各個模擬系統的計算結果,並未顯示出如此的一致性,甚至有部分系統的高分子質心擴散係數會隨著電場強度的增加而降低。根據電流變效應(electro-rheological, ER, effect)及計算高分子周圍溶劑分子的徑向分佈函數,可解釋各系統中高分子的動力行為,係由於外加電場引起極性分子間的偶極-偶極作用力而導致分子規則排列(alignment)與分子的流動性產生競爭所造成。
溶液中高分子的質心擴散係數隨外加電場強度而增加或減少的趨勢,與系統密度、高分子濃度、溶劑或高分子的極性大小以及外加電場強度有關。適當選擇並搭配以上各種性質,則可利用外加電場控制高分子在溶液中的運動行為。
Abstract
By means of molecular dynamics simulation the effect of external direct current electric field on the polyethylene-like (PE-like) polymer and methyl chloride solvent system is investigated. Three systems include normal solution, dilute solution, and lower-density solution are simulated. For each system, four conditions include non-charged polymers in nonpolar solvents, non-charged polymers in polar solvents, charged polymers in nonpolar solvents, and charged polymer in polar solvents are simulated.

The diffusion behavior of polymer in solvent is as functions of electric field, polarity of solvent molecules, and polarity of polymer. When an electric field is applied to the system include dielectric molecules, our calculation shows that the center of mass diffusion constant of polymer depends on the alignment of charged polymer or polar solvent molecules, the mobility of charged polymer or solvent molecules and the density of the system. The mobility of polar molecules results in the increase of the center of mass diffusion constant of polymer. The alignment of polar molecules results in the increase of fluid viscosity. This decreases the center of mass diffusion constant of polymer.
目次 Table of Contents
Table of Contents

Chapter 1 Introduction ------------------ 1
1-1 Progress about Computer Simulation 2
1-2 Dynamics of Polymer under External
Electric Field ------------------ 4

Chapter 2 Molecular Dynamics Simulation --- 7
2-1 Basic Principle of MD ------------- 8
2-2 Numerical Methods ----------------- 9
2-3 Image Box Dimensions ------------ 10
2-4 Cutoff Radius --------------------- 12
2-5 Nearest Image Convection ---------- 12
2-6 System Equilibrium ---------------- 13
2-7 Application of Reduced Unit ------- 14
2-8 Procedure of MD Simulation -------- 15

Chapter 3 System Construction & Analytical
Methods ------------------------- 17
3-1 Mixture of Polymers and Solvents -- 18
3-2 Force Field in Systems ------------ 19
3-3 Indispensable Information to the MD
Simulation ------------------------ 22
3-4 Simulated Properties ------------ 23
3-4-1 Center of Mass of Polymer ------ 23
3-4-2 Diffusion Coefficient ----------- 24
3-4-3 Radial Distribution Function ---- 25

Chapter 4 Results & Discussion ------------ 26
4-1 Diffusion Coefficient ---------- 27
4-1-1 AI, BI, CI Systems ---------- 27
4-1-2 AII, BII, CII Systems ------------- 28
4-1-3 AIII, BIII, CIII Systems ---------- 29
4-1-4 AIV, BIV, CIV Systems ------------- 29
4-2 Radial Distribution Function -------- 30
4-3 Discussions --------------------------- 31

Chapter 5 Conclusions ------------------- 35

References --------------------------------- 37


List of Figures

Figure 2.1. Two-dimensional periodic boundary
condition ----------------------- 42
Figure 2.2. Two-dimensional interaction among
units --------------------------- 43
Figure 2.3. The integrated processes of MD
simulation ---------------------- 44
Figure 3.1. The subjects in the simulation -- 45
Figure 3.2. Three simulated systems --------- 46
Figure 3.3. Four varieties of polymer-solvent
mixture --------------------- 47
Figure 4.1. Mean square displacement of unit in
polymer for AI, BI, and CI systems --- --------------------------------- 48
Figure 4.2. Mean square displacement of polymer
center of mass for AI, BI, and CI
systems ------------------------- 49
Figure 4.3. Diffusion constants of polymer in AI,
BI, and CI systems -------------- 50
Figure 4.4. Mean square displacement of unit in
polymer for AII, BII, and CII
systems -------------------------- 51
Figure 4.5. Mean square displacement of polymer
center of mass for AII, BII, and CII
systems -------------------------- 52
Figure 4.6. Diffusion constants of polymer in
AII, BII, and CII systems -------- 53
Figure 4.7. Mean square displacement of unit in
polymer for AIII, BIII, and CIII
systems -------------------------- 54
Figure 4.8. Mean square displacement of polymer
center of mass for AIII, BIII, and
CIII systems ----------------------55
Figure 4.9. Diffusion constants of polymer in
AIII, BIIII, and CIII systems----- 56
Figure 4.10. Mean square displacement of unit in
polymer for AIV, BIV, and CIV
systems -------------------------- 57
Figure 4.11. Mean square displacement of polymer
center of mass for AIV, BIV, and CIV
systems -------------------------- 58
Figure 4.12. Diffusion constants of polymer in
AIV, BIV, and CIV systems -------- 59
Figure 4.13. Radial distribution function for
AII, BII, and CII systems -------- 60
Figure 4.14. Radial distribution function for
AIII, BIII, and CIII systems ----- 61
Figure 4.15. Radial distribution function for
AIV, BIV, and CIV systems --------- 62
Figure 4.16. Mean square displacement of unit in
polymer for AII’, AII, AII’’ and
AII’’’ systems ---------------- 63
Figure 4.16. Mean square displacement of polymer
center of mass for AII’, AII,
AII’’ and AII’’’ systems ---- 64



List of Tables

Table 2.1. Conversion with reduced unit in MD
simulation ------------------------ 65
Table 3.1. The classification of simulated
systems ------------------------ 66
Table 3.2. Constants used for the potential
functions ------------------------- 67
Table 4.1. Diffusion constants of AII, BII, and
CII systems ------------------- 68
Table 4.2. Diffusion constants of AIII, BIII, and
CIII systems ------------- 69
Table 4.3. Diffusion constants of AIV, BIV, and
CIV systems ---------------- 70

參考文獻 References
1. D. A. McQuarrie, Statistical Mechanics, Harper & Row: New York, 1987.
2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press: Oxford, 1987.
3. G. Ciccotti, D. Frenkel, I. R. (Eds.) McDonald, Simulation of Liquids and Solids, North-Holland: Amsterdam, 1987.
4. G. Ciccotti and W. G. Hoover, Molecular-Dynamics Simulation of Statistical- Mechanical Systems, North-Holland: Amsterdam, 1986.
5. J. M. (Ed.) Goodfellow, Molecular Dynamics Applications in Molecular Biology, Boca Raton: CRC Press, Inc., 1990.
6. W. F. van Gunsteren and H. J. C. Berensen, Angew. Chem. Int. Ed. Engl., 1990, 29, 992.
7. K. Binder and M. H. (Eds.) Kalos, Monte Carlo Methods in Statistical Physics, Springer: Berlin, 1979.
8. D. P. Landau, K. K. Mon and H. B. Schuttler, Computer Simulation Studies in Condensed Matter Physics III, Springer-Verlag: Berlin, 1991.
9. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys., 1953, 21, 1087.
10. B. J. Alder and T. E. Wainwright, J. Chem. Phys., 1957, 27, 1208.
11. W. W. Wood and J. D. Jacobson, J. Chem. Phys., 1957a, 27, 1207.
12. W. W. Wood and F. R. Parker, J. Chem. Phys., 1957b, 27, 720.
13. A. Rahman, Phys. Rew., 1964, 136, A405.
14. J. J. Nicolas, K. E. Gubbins, W. B. Streett and D. J. Tildesley, Mol. Phys., 1979, 37, 1429.
15. L. Verlet, Phys. Rew., 1967, 159, 98.
16. L. Velert, Phys. Rew., 1968, 165, 201.
17. G. D. Harp and B. J. Berne, J. Chem. Phys., 1968, 49, 1249.
18. A. Rahman and F. H. Stillinger, J. Chem. Phys., 1971, 55, 3336.
19. L. V. Woodcock, Chem. Phys. Lett., 1971, 10, 257.
20. J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett., 1975, 30, 123.
21. J. A. McCammon, B. R. Gelin and M. Karplus, Nature, 1977, 267, 585.
22. P. ven der Ploeg and H. J. C. Berendsen, J. Chem. Phys., 1982, 76, 3271.
23. P. ven der Ploeg and H. J. C. Berendsen, Mol. Phys., 1983, 49, 233.
24. J. De Vlieg, H. J. C. Berendsen and W. F. van Gunsteren, Proteins, 1989, 6, 104.
25. P. Demontis and G. B. Suffritti, Chem. Phys. Lett., 1992, 191, 553.
26. P. Demontis, G. B. Suffritti, S. Quartieri, E. S. Fois and A. Gamba, J. Phys. Chem., 1988a, 92, 1988.
27. P. Demontis, S. Yashonath and M. L. Klein, J. Phys. Chem., 1989, 93, 5016.
28. P. L. June, A. T. Bell and D. N. Theodorou, J. Phys. Chem., 1992, 96, 1051.
29. L. Leherte, J. M. Andre, E. G. Derouane and D. P. Vercauteren, J. Chem. Soc., Faraday Trans., 1991, 87, 1959.
30. P. Santikary and S. Yashonath, J. Chem. Soc., Faraday Trans., 1992, 88, 1063.
31. S. Yashonath, Chem. Phys. Lett., 1991a, 177, 54.
32. S. Yashonath, J. Phys. Chem., 1991b, 95, 5877.
33. S. Yashonath, P. Demontis and M. L. Klein, Chem. Phys. Lett., 1988, 153, 551.
34. C. L. Chen, H. L. Chen, C. L. Lee and J. H. Shih, Macromolecules, 1994a, 27, 2087.
35. C. L. Chen, C. L. Lee, H. L. Chen and J. L. Shih, Macromolecules, 1994b, 27, 7872.
36. H. L. Chen, C. L. Lee, J. H. Shih and C. L. Chen, Computational Polymer Science, 1994c, 4, 67.
37. A. D. Nola, H. J. C. Berendsen and O. Edholm, Macromolecules, 1984, 17, 2044.
38. S. Blonski and W. Brostow, J. Chem. Phys., 1991, 95, 2890.
39. R. J. Roe, Editor, Computer Simulation of Polymers (Prentice Hall, Englewood Cliffs, New Jersey, 1991).
40. J. A. Barker, J. Chem. Phys., 1979, 70, 2914.
41. D. Chandler and P. G. Wolynes, J. Chem. Phys., 1981, 74, 4078.
42. N. Corbin and K, Singer, Mol. Phys., 1982, 46, 671.
43. R. A. Kuharski and P. J. Rossky, Chem. Phys. Lett., 1984, 103, 357.
44. M. Sprik, M. L. Klein and D. Chandler, J. Chem. Phys., 1985, 83, 3042.
45. D. Thirumalai, R. W. Hall and B. J. Berne, J. Chem. Phys., 1984, 81, 2523.
46. R. J. Roe, J. Chem. Phys., 1994, 100, 1610.
47. D. Fincham and B. J. Ralston, Comput. Phys. Commun., 1981, 23, 127.
48. (a) S. F. Tsai, Y.K. Lan and C. L. Chen, Computational & Theoretical Polymer Science, 1998, 8, 283. (b) J. H. Shin and C. L. Chen, Macromolecules, 1995, 28, 4509.
49. A. P. Gast and C. F. Zukoski, Adv. Colloid Interface Sci., 1989, 30, 153.
50. Z. P. Shulman, R. G. Gorodkin, E. V. Korobko and V. K. Gleb, J. Non-Newtonian Fluid Mech., 1981, 8, 29.
51. (a) G. R. Meredith, J. G. van Dusen and D. J. williams, Macromolecules, 1982, 15, 1385. (b) H. Wang, R. C. Jarnagin and E. T. Samulski, Macromolecules, 1994, 27, 4705.
52. C. H. Wang and Q. R. Huang, J. Chem. Phys., 1997, 106, 15.
53. Z. Sun and C. H. Wang, Macromolecules, 1999, 32, 2605.
54. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press: Oxford, 1987.
55. B. Dunweg and K. Kremer, J. Chem. Phys., 1993, 99, 6983.
56. M. Levitt and H. Meirovitch, J. Mol. Biol., 1983, 168, 617.
57. D. Rigby and R. J. Roe, J. Chem. Phys., 1988, 89, 5280.
58. R. A. Scott and H. A. Scheraga, J. Chem. Phys., 1966, 44, 3054.
59. J. P. Ryckaert and A. Bellemans, Chem. Phys. Lett., 1975, 30, 123.
60. P. W. Atkins, Physical Chemistry, University Press: Oxford, 1994.
61. M. Kiselve and K. Heinzinger, J. Chem. Phys., 1996, 105, 650.
62. W. Winslow, J. Appl. Phys., 1949, 20, 1137.
63. W. Winslow, J. Appl. Phys., 1949, 20, 1137.
64. H. A. Pohl and E. H. Engelhart, J. Phys. Chem., 1962, 66, 2085.
65. A. P. Gast and C. F. Zukoski, Adv. Colloid Interface Sci., 1989, 30, 153.
66. P. M. Adriani and A. P. Gast, Phys. Fluids, 1988, 31, 2757.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code