Responsive image
博碩士論文 etd-0710101-164237 詳細資訊
Title page for etd-0710101-164237
論文名稱
Title
以六氟鈦酸與硝酸鋇之沉澱粉末配製溶液生長二氧化鈦薄膜與鈦酸鋇薄膜於矽基板上
Liquid Phase Deposition of TiO2 and BaTiO3 Thin Films on Si Substrate Using the Solution Prepared by Precipitate Powder of Hexafluorotitanic Acid and Barium Nitrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-22
繳交日期
Date of Submission
2001-07-10
關鍵字
Keywords
電性、沉積機制、二氧化鈦、液相沉積法、鈦酸鋇
TiO2, BaTiO3, LPD, deposition mechanisms, electrical properties
統計
Statistics
本論文已被瀏覽 5711 次,被下載 0
The thesis/dissertation has been browsed 5711 times, has been downloaded 0 times.
中文摘要
中文摘要:
近年來,超大型積體電路採用高介電材料取代二氧化矽做為動態記憶體中電容之介電材料日趨明顯。隨著高密度動態記憶體中電荷儲存結構尺寸之縮減,二氧化鈦與鈦酸鋇由於具有高介電常數、高折射係數和高化學穩定性,故有希望應用於高密度動態記憶體之介電材料。本論文旨在研發高介電二氧化鈦(TiO2)薄膜與鈦酸鋇(BaTiO3, BTO)薄膜的沉積方法與薄膜特性之研究。二氧化鈦與鈦酸鋇具有較高的介電常數(εr),因此可以被運用在動態隨機存取記憶體(DRAM)或電子元件中之絕緣層。但由於傳統成長氧化層的方法,如:分子束磊晶(MBE)化學氣相沉積(CVD)均須在高溫沉積,高溫會對元件造成一定程度的傷害。所以我們研究一種新的技術 “以液相沉積法(Liquid Phase Deposition-LPD) 生長鈦酸鋇(BaTiO3)薄膜”,其過程簡單、成本低廉、而且成長溫度極低(小於100℃),因此值得廣泛研究和發展。對於測量此法所得的鈦酸鋇薄膜特性方面,我們利用掃描式電子顯微鏡(SEM) 、二次離子質譜儀(SIMS) 、傅立葉紅外線光譜儀(FTIR)與歐傑電子光譜儀(AES)分析,可得到鋇、鈦、氧的組成縱深分佈。另外,由漏電流密度-電場強度曲線(J-E Curve)與電容-電壓曲線(C-V Curve)我們可瞭解兩薄膜的漏電效應並得知平帶電壓偏移(VFB) 、介電常數(εr)與有效電荷密度(Qeff)。此外,我們使用熱退火與熱氧化來改善二氧化鈦薄膜與鈦酸鋇薄膜的漏電流特性。二氧化鈦薄膜與鈦酸鋇薄膜介電常數分別可高達40與62,漏電流亦可分別降低至1 × 10-5 A/cm2與5 × 10-9 A/cm2。
未來改進的目標 (1)提高兩薄膜內的氧成份比,以及提升鈦酸鋇薄膜內的鋇含量。(2)研發更簡易的原料配製過程。(3)對所提沉積機制的在檢驗。
Abstract
ABSTRACT

In recent years, there has been increasing demands for high dielectric materials to replace SiO2 for high-density dynamic random access memories with ultra large scale integration (ULSI). As the dimensions of the charge storage node decrease in high-density dynamic random access memories (DRAMs), TiO2 and BaTiO3 are very promising candidates for applications with exhibiting higher dielectric constant, high refractive index and high chemical stability.
The physical and chemical properties of LPD thin film by means of several measuring instruments, including Fourier Transform Infrared Spectrometer (FTIR), Auger Electron Spectroscopy (AES), Secondary Ion Spectrometer (SIMS), and X-Ray Diffractometer (XRD). As for the category in the electrical properties, such as C-V curve and I-V curve, of LPD-BTO thin film is comprehended in the most important part of this chapter. Further, we try to improve these electrical properties of LPD-TiO2 and LPD-BTO thin film by post-annealing in oxygen atmosphere at several high temperatures.
From leakage current density-electric field intensity voltage (J-E) and capacitance-voltage (C-V) measurements, the leakage current densities are about (LPD-TiO2: 1 × 10-5 A/cm2 and LPD-BTO: 5 × 10-9 A/cm2). And the individual dielectric constants of both films (TiO2 and BTO) are calculated about 40 and 60. This value is larger than thermal oxide, PECVD oxide, and LPD-SiO2. We also can obtain the flat band voltage shifts of LPD-TiO2 and LPD-BTO films which are about –0.5V and 0V; the effective oxide charges which are calculated about –4.52×1011 cm-2 and –2.27×1012 cm-2
The future goals:
(1) Raising the atomic concentration of oxygen within both films and of barium within LPD-BTO film.
(2) Shortening the process in preparation of both deposition solutions.
(3) Re-checking both models.
目次 Table of Contents
CONTENTS

LIST OF FIGURES……………………………………………………...I
LIST OF TABLES………………………………………………………V ABATRACT…………………………………………………………… VI

1.INTRODUCTION……………………………………………………...1
1-1 Trend in DRAM Dielectrics………………………………………1
1-2 High Dielectric Constant Material
Barium Titanate (BaTiO3)……………………………………2
1-3 Background of Liquid Phase Deposition (LPD) in Our Lab……...4
1-3-1 LPD-SiO2 …………………………………………………...4
1-3-2 LPD-SiON and Biased-LPD-SiON…………………………6
1-3-3 LPD-TiO2 and LPD-BTO…………………………………...7
1-4 Advantages of LPD Deposition1………………………………...11

2.EXPERIMENTS………………………………………………………13
2-1 Deposition System………………………………………………13
2-2 Cleaning of Silicon Substrate……………………………………14
2-3 Preparation of Deposition Solution……………………………...15
2-3-1 Preparation of Precursors…………………………………..15
2-3-2 Preparation of LPD-TiO2 Deposition Solution…………….17
2-3-3 Preparation of LPD-BTO Deposition Solution…………….19
2-3-4 Difference between LPD-TiO2 and LPD-BTO Deposition Soluiotns…………………………………………………..20
2-4 Film Deposition………………………………………………….21
2-5 Characteristics…………………………………………………...22
2-5-1 Physical Properties………………………………………...22
2-5-2 Chemical Properties………………………………………..22
2-5-3 Electrical Properties – MOS Structure…………………….23

3.RESULTS AND DISCUSSION………………………………………26

PART A: Investigation of LPD-TiO2 Films on Silicon Substrate………27
3-1 Mechanisms of LPD-TiO2 Deposition…………………………..27
3-1-1 Crystallinity of LPD-TiO2 Film……………………………27
3-1-2 Model of LPD-TiO2 Deposition…………………………...27
3-1-3 Chemical Equilibrium of LPD-TiO2 Deposition…………..29
3-2 Deposition Parameters and Physical Properties of LPD-TiO2
Films…………………………………………………………...31
3-2-1 Deposition Rate and Refractive Index as a Function of
Deposition Time…………………………………………...31
3-2-2 Deposition Rate and Refractive Index as a Function of
Deposition Temperature………………..…………..……...33
3-2-3 Deposition Rate and Refractive Index as a Function of
H3BO3 Molarity in the Deposition Solution……………….34
3-3 Chemical Properties of As-deposited LPD-TiO2 Films…………35
3-3-1 AES Depth Profile of LPD-TiO2 Film……………………..36
3-3-2 SEM View of LPD-TiO2 Films…………………………….36
3-3-3 SIMS Depth Profile of As-deposited LPD-TiO2 Film……..37
3-3-4 Analyses of Room Temperature FTIR Spectra ……………37
3-4 Electrical Characteristics of As-deposited LPD-TiO2 Film……..39
3-4-1 J-E Measurement…………………………………………..39
3-4-2 C-V Measurement………………………………………….40

PART B: Investigation of LPD-BTO Thin Films on Silicon Substrate...42
3-5 Mechanisms of LPD-BTO Deposition…………………………..42
3-5-1 Crystallinity of LPD-BTO Thin Film……………………...42
3-5-2 Model of LPD-BTO Deposition…………………………...42
3-5-3 Chemical Equilibrium of LPD-BTO Deposition…………..43
3-6 Deposition Parameters and Physical Properties of LPD-BTO Films…………………………………………………………….45
3-6-1 Deposition Rate and Refractive Index as a Function of
Deposition Time…………………………………………...45
3-6-2 LPD-BTO Thin-Film Deposition in Initial Period………...46
3-6-3 Deposition Rate and Refractive Index as a Function of
Deposition Temperature…………………………………...47
3-6-4 Deposition Rate and Refractive Index as a Function of
H3BO3 Molarity in the Deposition Solution……………….49
3-7 Chemical Properties of As-deposited LPD-BTO Films…………50
3-7-1 AES Depth Profile and Survey Scan of LPD-BTO Film….50
3-7-2 SEM View of LPD-BTO Films……………………………51
3-7-3 SIMS Depth Profile of As-deposited LPD-BTO Film…….51
3-7-4 Analyses of Room Temperature FTIR Spectra…………….52
3-8 Electrical Characteristics of As-deposited LPD-BTO Film……..52
3-8-1 J-E Measurement…………………………………………..52
3-8-2 C-V Measurement………………………………………….53
3-8-3 Leakage Current Mechanisms……………………………..53
3-9 Improvements of Leakage Current by Annealing in Oxygen Ambient…………………………………………………………..54

4. CONCLUSIONS………………………………………………….58

FIGURES………………………………………………………60~100
TABLES………………………………………………………101~103
REFERENCES………………………………………………..104~110
參考文獻 References
[1] Kinam Kim, Chang-Gyu Hwang, Senior Member, IEEE, and Jong Gil Lee, “DRAM Technology Perspective for Gigabit Era,” IEEE Trans. Electron Devices, vol. 45, pp. 598-608, March. 1998.
[2] Q. X. Jia, L. H. Chang, and W. A. Anderson, “Low leakage current BaTiO3 thin film capacitors using a multilayer construction,” Thin Solid Films, vol. 259, pp. 264-269, 1995.
[3] K. Sreenivas, Abhai Mansingh, and M. Sayer, “Structure and electrical properties of rf-sputtered amorphous barium titanate thin films,” J. Appl. Phys., vol . 62, No. 11, pp. 4475-4481, December. 1987.
[4] S. K. Tiku and G. C. Smith, “Choice of Dielectrics for Tfel Displays,” IEEE Trans. Electron Devices, vol. 31, Iss. 1, pp. 105-108, 1981.
[5] M. Kitabatake, T. Mitsuyu, and K. Wasa, “Structure and Electrical-Properties of Amorphous PbTiO3 Thin Films Sputtered on Cooled Substrates,” J. Non-Crysl. Solids., vol. 53, Iss. 1-2, pp. 1-10, 1982.
[6] Q. X. Jia, Z. Q. Shi, J. Yi, and W. A. Anderson, “Effect of Barrier Layers on BaTiO3 Thin Film Capacitors on Si Substrates,” J. Electron. Mater., vol. 23, No. 1, pp. 53-56, 1994.
[7] V. S. Dharmadhikari and W. W. Grannemann, “Photo-Voltaic Properties of Ferroelectric BaTiO3 Thin-Films RF Sputter Deposited on Silicon,” J. Appl. Phys., vol. 53, Iss. 12, pp. 8988-8992, 1982.
[8] P. Li and T. M. Lu, “Reactive Partially Ionized Beam Deposition of BaTiO3 Thin-Films,” Appl. Phys. Letts., vol. 57, Iss. 22, pp. 2336-2338, 1990.
[9] S. N. Chen, W. W. Grannemann, and E. S. Ramakrishnan, “Barium-Titanate Thin-Film Humidity Sensitive Capacitor,” J. Vacuum. Science. Tech. A., vol. 3, Iss. 3, pp.678-680, 1985.
[10] Q. X. Jia, L. H. Chang and W. A. Anderson, “Interactions Between Ferroelectric BaTiO3 and Si,” J. Electron. Mater., vol. 23, No. 6, pp. 551-556, 1994.
[11] M. H. Song, Y. H. Lee, T. S. Hahn, and Myung Hwan Oh, “Effects of a new stacking method on characteristic of multilayered BaTiO3 thin film,” J. Appl. Phys., vol. 79, No. 7, 1 April, 1996.
[12] H. B. Sharma and H. N. K. Sarma, “Electrical Properties of Sol-Gel Processed Barium Titanate Films,” Thin Solid Films, vol. 330, Iss. 2, pp. 178-182, 1998.
[13] T. Yoko, K. Kamiya, and K. Tanaka, “Preparation of Multiple Oxide BaTiO3 Fibers by Sol-Gel Method,” J. Materials. Soc., vol. 25, Iss. 9, pp. 3922-3929, 1990.
[14] H. Shimooka and S. Kohiki, “Thermal-Behavior of Sol-Gel-Derived Barium-Titanate Gels,” J. Ceramic. Soc. Jpn, vol. 106, Iss. 7, pp. 703-708, 1998.
[15] L. A. Wills, B. W. Wessels, D. S. Richeson, and T. J. Marks, “Epitaxial-Growth of BaTiO3 Thin Films by Organometallic Chemical Vapor Deposition,” Appl. Phys. Letts., vol 60, Iss. 1, pp.41-43, 1992.
[16] J. Zhao, V. Fuflyigin, F. V. Wang, P. E. Norris, L. Bouthilette, and C. Woods, “Epitaxial Electrooptical BaTiO3 Films by Single-Source Metal-Organic Chemical Vapor Deposition,” J. Mater. Chem., vol. 7, Iss. 6, pp. 933-936, 1997.
[17] T. W. Kim, Y. S. Toon, S. S. Yom, and C. O. Kim, “Ferroelectric BaTiO3 Films with a High-Magnitude Dielectric Constant Grown on P-Si by Low-Pressure Metalorganic Chemical-Vapor-Deposition,” Appl. Surf. Sci., vol.90, Iss. 1, pp. 75-80, 1995.
[18] S. Tsunekawa, J. Ichikawa, Y. Yoneda, and T. Ozaki, “AFM Observation of 180-Degrees Domains in BaTiO3 Crystals Grown by MBE,” J. Korean. Phys. Soc., vol. 32, Iss. S, pp. S777-S779, 1998.
[19] R. A. Mckee, F. J. Walker, J. R. Conner, E. D. Specht, and D. E. Zelmon, “Molecular-Beam Epitaxy Growth of Epitaxial Barium Silicide, Barium Oxide, Barium Titanate on Silicon,” Appl. Phys. Letts., vol. 59, Iss. 7, pp. 782-784, 1991.
[20] Q. X. Jia, J. L. Smith, L. H. Chang, and W. A. Anderson, “Characteristics of BaTiO3 Thin Film on Si Deposited by RF Magnetron Sputtering,” Philosophical. Magazine B., vol. 77, Iss. 1, pp. 163-175, 1998.
[21] S. Kim, S. Hishita, Y. M. Kang, and S. Baik, “Structural Characterization of Epitaxial BaTiO3 Thin Films Grown by Sputter-Deposition on MgO (100),” J. Appl. Phys., vol. 78, Iss. 9, pp. 5604-5608, 1995.
[22] Q. X. Jia, Z. Q. Shi, and W. A. Anderson, “BaTiO3 thin film capacitors deposited by R.F. Magnetron Sputtering,” Thin Solid Films, vol. 209, pp. 230-239, 1992.
[23] K. E. Katz, “Oxidation,” VLSI Technology ( 2nd ed. ) ( S.M.Sze ), McGrow-Hill, New York, pp. 98, 1988.
[24] S. V. Nguyen, D. Dobuzinsky, D. Dopp, R. Gleason, S. Fridmann, and M. Gibson, “Plasma-Assisted Chemical Vapor Deposition and Characterization of High Quality Silicon Oxide Films,” Thin Solid Films, vol. 193, Iss 1-2, pp. 595-609, 1990.
[25] Y. N. Sun, E. N. Farabaugh, and A. Feldman, “X-ray Photoelectron-Spectroscopy of O 1s and Si 2p Line in Films of SiOx Formed by Electron-Beam Evaporation,” Thin Solid Films, vol. 11, Iss 3, pp. 351-360, 1988.
[26] J. Kortlandt and L. Oosting, “Deposition and Properties of RF Reactively Sputtered SiO2 Layers,” Solid State Tech., vol. 25, Iss 10, pp. 153-159, 1982.
[27] H. Kawazoe, and K. Seki, “Growth Mechanisms of Silica Glass Using the Liquid Phase Deposition ( LPD ),” J. Non-cryst. Solids, vol. 151, Iss. 1-2, pp. 102-108, 1992.
[28] H. Nagayama, H. Honda, and H. Kamahara, “A New Process for Silica Coating,” J. Electrochem. Soc., vol. 135, Iss. 8, pp. 2013-2016, 1988.
[29] R. I. Hegde, P. J. Tobin, K. G. Reid, Bikas Maiti, and S. A. Ajuria, “Growth and Surface Chemistry of Oxynitride Gate Dielectric Using Nitric oxide,” Appl. Phys. Lett., vol. 66, Iss. 21, pp. 2882-2884, 1995.
[30] M. J. Rand and J. F. Robert, “Silicon Oxynitride Films from the NO-NH3-SiH4 Reaction,” J. Electrochem. Soc., vol. 120, p446, 1973.
[31] T. Honda, K. Niihara, T. Hirai, F. Itoh, and K. Suzuki, “Chemical-Bond of CVD-Si3N4 by Compton-Scattering Measurement,” J. Phys. Soc. Jpn, vol. 48, Iss. 2, pp. 561-566, 1980.
[32] R. S. Rosler, W. C. Benzing and J. Baldo, “A Production Reactor for Low Temperature Plasma-Enhanced Silicon Nitride Deposition,” Solid State Tech., vol. 19, p.45, 1976.
[33] S.B. Desu,” Ultra-thin TiO2 films by novel method,” Materials Science and Engineering-B, vol. 13, Iss. 4, pp. 299-303, 1992.
[34] J. Aarik, A. Aidla, T. Uustre, and V. Sammelselg, ”Morphology and structure of TiO2 thin films grown by atomic layer depositon,” J. Crytal Growth, vol. 148, Iss. 3, pp. 268-275, 1995.
[35] T. Fuyuki, H. Matsunami, and T. Kobayashi, “Effects of Small Amount of Water on Physical and Electrical-Properties of TiO2 Films Deposited by CVD Method,” J. Electrochem. Soc., vol. 135, Iss. 1, pp. 248-250, 1988.
[36] Y. Abe and T. Fukuda, “TiO2 Thin-Films Formed by Electron- Cyclotron-Resonance Plasma Oxidation at High-Temperature and Their Application to Capacitor Dielectrics,” Jpn. J. Appl. Phys. Part 2 Letts., vol. 33, Iss 9A, pp. L1248-L1250, 1994.
[37] K. Fukushima and I. Yamada, “Surface Smoothness and Crystalline-Structure of ICB Deposited TiO2 Films,” Appl. Sur. Sci., vol. 43, Iss DEC, pp. 32-36, 1989.
[38] L. J. Meng and M. P. Dossantos, “ Investigations of titanium oxide films deposited by d.c. reactive magnetron sputtering in different sputtering pressures,” Thin Solid Films, vol. 226, Iss. 1, pp. 22-29, 1993.
[39] Y. H. Lee, K. K. Chan and M. J. Brady, ”Plasma-Enhanced Chemical-Vapor-Deposition of TiO2 in Microwave-Radio Frequency Hybrid Plasma Reactor,” J. Vac. Sci. & Technol., vol. 13, Iss 3, pp. 596-601, 1995.
[40] H. Y. Lee and H. G. kim, “ The role of gas-phase nucleation in the preparation of TiO2 films by chemical vapor deposition,” Thin solid Films, vol. 229, Iss. 2, pp. 187-191, 1993.
[41] Sorab, and K. Ghandhi, “Etching and Cleaning,” VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, pp. 591, 1994.
[42] K. Kim, C. G. Hwang, Senior Member, IEEE, and J. G. Lee, “DRAM Technology Perspective for Gigabit Era,” IEEE Trans. Electron Devices, vol. 45, pp. 598-608, March. 1998.
[43] T. Homma, T. Goda, et al., “A New Interlayer Formation Technology for Completely Planarized Multilevel Interconnection by Using LPD,” Symposium on VLSI Technology, pp. 3, 1990.
[44] K. Kanba, T. Homma, et al., “A 7 Mask CMOS Technology Utilizing Liquid Phase Selective Oxide Deposition,” IEDM Tech. Dig., pp. 637, 1991.
[45] C. F. Yeh, S. S. Lin, C. L. Chen, and Y. C. Yang, “Novel Technique for SiO2 Formed by Liquid Phase Deposition for Low Temperature Processed Polysilicon TFT,” IEEE Electron Dev. Letts., vol. 14, Iss. 8, pp. 403-405, 1993.
[46] S. K. Ghandhi, “Etching and Cleaning”, VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.
[47] Raymond Chang, “Chapter 4: 4.4 Concentration and Dilution of Solutions”, Chemistry (fifth edition), pp. 136, McGraw-Hill, New York, 1994.
[48] David R. Lide, ”Aqueous Solubility of Inorganic Compounds at Various Temperatures”, HANDBOOK of CHEMISTRY and PHYSICS, 80TH, CRC Press, Vol. 8, 1999-2000, pp. 103.
[49] David R. Lide, ”Aqueous Solubility of Inorganic Compounds at Various Temperatures”, HANDBOOK of CHEMISTRY and PHYSICS, 80TH, CRC Press, Vol. 8, 1999-2000, pp. 105.
[50] J. S. Chou and S. C. Lee, “The Initail Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition,” J. Electrochem. Soc., vol. 141, Iss. 11, pp. 3214-3218, 1994.
[51] D. Sxarpiello and W. Cooper, J. Chem. Data 9, p.364, 1964.
[52] P. H. Chang, C. T. Huang and J. S. Shie, “On Liquid-Phase Deposition of Silicon Dioxide by Boric Acid Addition,” J. Electrochem. Soc., vol. 144, pp. 1144-1149, 1997.
[53] Dacid R. Lide, “Strength of Chemical Bonds”, HANDBOOK of CHEMISTRY and PHYSICS 80TH, CRC Press 12, pp.8-9, 1999.
[54] Dacid R. Lide, “Strength of Chemical Bonds”, HANDBOOK of CHEMISTRY and PHYSICS 80TH, CRC Press 8, pp.102-109, 1999.
[55] H. W. Werner, Microelectronic Materials and Processes, edited by R. A. Levy (Kluwer, dorodrecht, 1989), Chap. 16, pp.895.
[56] D. V. Tsu, G. Lucovsky, and M. J. Mamtimi, “Local Atomic Strutcure in Thin Films of Silicon Nitride and Silicon Diimide Produced by remote Plasma-enhanced Chemical-vapor Deposition”, Phys. Rev. B, vol. 33, pp. 7069-7076, 1986.
[57] Ching-Fa Yeh, Chun-Lin Chen, and Guan-Hung Lin, “The Physicochemical Properties and Growth Mechanism of Oxide (SiO2-xFx) by Liquid Phase deposition with H2O Addition Only”, J. Electrochem. Soc., vol. 141, vol. 11, pp.3177-3181, 1994.
[58] Wai-Jyh Chang, Mau-Phon Houng and Yeong-Her Wang, “Fourier Transform Infrared Characterization of Moisture Absorption on SiOF Films”, Jpn. J. Appl. Phys., Vol. 38, pp.4642-4647, 1999.
[59] G. Lucovsky, R. J. Nemanich and J. C. Knights, Phys. Rev. B19, pp.2064, 1979.
[60] M. Yoshimaru, s. Koizumi. And K. Shmokawa, “Structure of Fluorine-doped Silicon Oxide Films Deposited by Plasma-enhanced Chemical Vapor Deposition ”, J. Vac. Sci. Technol. A, vol.15, No. 6, pp.2908-2914, 1997.
[61] V. G. Erkov, S. F. Devyatova, E. L. Molodstova, Y. V. Malsteva, U. A. Yanovskii, “Si-TiO2 Interface Evolution at Prolonged annealing in Low Vacuum or N2O Ambient”, Appl. Surf. Sci., vol. 166, pp.51-56, 2000.
[62] M. N. Kamalasanan, N. Deepak Kumar, and Subhas Chandra, “Structural and Microstructural Evolution of Barium Titanate Thin Films Deposited by the Sol-gel Process”, J. Appl. Phys., vol. 76, No. 8, pp. 4603-4609, 1994.
[63] N. M. Laptash, O. G. Maslennikova, Y. a. Kaidalova, “ammonium Oxofluorotitanates”, H. Fluo. Chem., vol. 99, pp.133-137, 1999.
[64] J. J. Cheng and D. W. Wang, “Structure Transformation of the TiO2-SiO2 System Gel During Heat-treatment”, J. Non-cryst. Sol., vol. 100, pp.288-291, 1988.
[65] P. Lange, H. Bernt, E. Hartmannsgruber, and f. Naumann, J. Electrochem. Soc., 141, pp.259, 1994.
[66] T. Homma and Y. Murao, “Properties of Liquid-phase-deposited SiO2 Films for Interlayer Dielectrics in Ultralarge-scale Integrated Circuit Multilevel,” Thin Solid Films, vol. 249, Iss. 1, pp.15-21, 1994.
[67] J. S. Chou and S. C. Lee, “The Initial Growth Mechanism of silicon Oxide by Liquid-Phase Deposotion”, J. Electrochem. Soc., Vol.141, 1994, pp3214.
[68] David R. Lide, “Strength of Chemical Bonds”. HANDBOOK of CHEMISTRY and PHYSICS 73RD CRC, Press 9, pp.51-57, 1992.
[69] A. Turik, Bull. Acad. Scu. USSR Phys. Ser., Vol. 29, pp.212, 1965
[70] C. N. Yang, “The Characteristics and Application of Silicon Dioxide by Liquid Phase Deposition,” pp. 22-23, 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.9.141
論文開放下載的時間是 校外不公開

Your IP address is 3.144.9.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code