Responsive image
博碩士論文 etd-0710101-172241 詳細資訊
Title page for etd-0710101-172241
論文名稱
Title
大空間中庭建築性能式煙控系統設計分析
Performance-based Design Analysis of Smoke Management System in Buildings with Large Space and Atria
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-04
繳交日期
Date of Submission
2001-07-10
關鍵字
Keywords
性能式煙控系統、中庭
performance-based smoke management system, atrium
統計
Statistics
本論文已被瀏覽 5708 次,被下載 5225
The thesis/dissertation has been browsed 5708 times, has been downloaded 5225 times.
中文摘要
目前台灣各類建築物建造時所遵循的火災安全法規為典型條例式(Prescription)法規,然而,對於具備中庭或挑高與開闊空間部分之建築物而言,必須利用性能式火災安全設計方法(performance-based fire safety design method) 來做為此類建築物之煙控系統設計依據。因此本文之主要目的便是發展完整的中庭建築性能式火災安全設計準則(Design Guideline)。
本文首先經由文獻收集以及火災煙柱與煙層沈積速率之理論分析,歸納出影響大空間中庭建築煙控系統設計之重要參數,此等重要參數包含:煙柱傳輸延遲時間、天花板噴流傳輸延遲時間、煙捲吸率、機械排煙量以及自然排煙量。為了準確地預測出火災發生時煙流動特性與煙層沈積現象,本文採用代數方程式法以及場模式法,將模擬結果與相關文獻之實驗數據比對,以印證代數方程式法以及場模式法之適用性,接著再進一步探討此等設計參數之預測模式。
另一方面,除了利用數值方法討論影響大空間中庭建築煙控系統設計之重要參數之外,本文以中國科學技術大學之大空間火災實驗廳進行全尺度大空間中庭建築火災實驗,進一步探討各種煙控策略對煙層沈積速率之影響,並印證利用場模式以及代數方程式法之準確性。實驗數據與模擬結果比較分析顯示,利用場模式法可準確預測出火災產生之濃煙的流動現象以及煙層沈積速率。
最後,本研究將所建立之有關火災煙柱之預測公式以及各種煙控系統之特性與計算公式,組合成一簡單的性能式煙控系統設計準則。並透過範例之計算來說明這套煙控系統設計準則之用途。

Abstract
In Taiwan, the fire code is prescriptive in nature and is inappropriate to be utilized in buildings with large spaces and atria, where performance-based fire safety design method is applied. It is the goal of this dissertation to develop a design guide for this application.
Through literature survey and theoretical analysis, the important parameters were induced, including: plume transport time lag, ceiling jet transport time lag, smoke entrainment rate, mechanical and natural ventilation rate. To predict smoke behavior and descending rate accurately, algebraic equations and field model were both used to calculate and compare with experimental result so that its applicability can be evaluated.
Furthermore, a full-scale experiment has been conducted in the USTC campus to validate that the field model can predict the smoke behavior and descending rate accurately.
Finally, the calculation models developed in this study were compiled into a guideline for fire engineering performance-based designs. Design examples were also demonstrated to explain its procedure in engineering application.

目次 Table of Contents
謝誌 I
目錄 II
圖目錄 IV
表目錄 VIII
摘要 IX
英文摘要 X
符號說明 XI
第一章 緒論 1
1-1研究背景與動機 1
1-2研究方法與目的 2
1-3研究內容與步驟 4
第二章文獻回顧 8
2-1 傳輸延遲時間(transport time lag) 8
2-2 煙捲吸率(smoke entrainment mass flow rate ) 11
2-3 中庭建築煙控系統 13
第三章 理論分析 17
3-1 代數方程式法 17
3-2 場模式 18
3-3 格點配置 22
3-4 FDS程式驗證 25
第四章 全尺度實驗 28
4-1 全尺度實驗 28
4-2 量測參數與儀器之架設 29
4-3 預備實驗—油盤燃燒之熱釋放率量測 30
第五章 研究結果與討論 35
5-1 煙柱傳輸延遲時間 35
5-2 天花板噴流傳輸延遲時間 44
5-3 煙捲吸率 47
5-4 機械排煙系統 56
5-5 自然排煙系統 59
5-6中庭建築煙控系統 67
第六章 中庭建築性能式火災安全設計準則之建立 84
6-1 性能式煙控系統之設計流程 84
6-2 中庭建築煙層自然沈積之設計 85
6-3 中庭建築機械排煙系統之設計 86
6-4 中庭建築自然排煙系統之設計 87
6-5 中庭建築複和式煙控系統之設計 89
6-6 計算案例 90
第七章 結論 94
參考文獻 98
著作目錄 108

參考文獻 References
1. Alpert R. L., “Calculation of Response Time of Ceiling-Mounted Fire Detectors”, Fire Technology, Volume 8, 1972, pp. 181~195.
2. ASHRAE, “ASHRAE Guideline 5, Guideline for the commissioning of smoke management systems”, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA, U.S.A., 1994.
3. Australian Building Codes Board, “Building Code of Australia”, Canberra, Australia, 1994.
4. Babrauskas Vytenis, “Burning Rates”, The SFPE Handbook of Fire Protection Engineering, Society of Fire Protection Engineering, 1995.
5. Babrauskas Vytenis, “Estimating Large Pool Fire Burning Rates”, Fire Technology, Vol. , 1981, pp. 251-261..
6. Baum H. R., B. J. MaCaffery, “Fire Induced Flow Field – Theory and Experiment”, Fire Safety Science – Proceedings of the Second International Symposium, 1989, pp. 129~148.
7. Baum H. R., McGrattan, K. B. and Rehm, R. G., “Three Dimensional Simulations of Fire Plume Dynamics”, Fire Safety Science – Proceedings of the Fifth International Symposium, 1998, pp. 511~522.
8. Baum, Howard R., McGrattan, Kevin B, Rehm, Ronald G., “Large Eddy Simulations of Smoke Movement in Three Dimensions”, Interflam ’96, 7th International Interflam Conference, March 26-28, 1996, Cambridge, England, pp. 189~198.
9. Beuther, P. D., Capp, S. P., George, W. K., Paper 79-HT-42, American Society of Mechanical Engineers, 1979.
10. Beuther, P. D., George, W. K., Proc. Seventh International Heat Transfer Conference, Munich, 1982.
11. Beyler, C. L., “Fire Plumes and Ceiling Jets”, Fire Safety Journal, Volume 11, 1986, pp. 53~75.
12. Boris Galperin, Ateven A. Orszag, “Large Eddy Simulation of Complex Engineering and Geophysical Flows”, Cambridge University Press, 1993.
13. Cetegen, B. M., Zukoski, E. E. and T. Kubota, “Entrainment in Fire Plumes”, Fire Safety Journal, Vol. 3, 1980, pp. 107~121.
14. Cetegen, B. M., Zukoski, E. E. and T. Kubota, “Entrainment in the Near and Far Field of Fire Plumes”, Combustion Science and Technology, Vol. 39, 1984, pp. 305~331.
15. Chitty R., Cox, G. “ASKFRS: An Interactive Computer Program for Conducting Fire Engineering Estimations”, BRE, 1988.
16. Chow W. K., W. K. Wong, “On the Simulation of Atrium Fire Environment in Hong Kong Using Zone Models”, Journal of Fire Science, Vol. 11, 1993, pp. 3~51.
17. Chow, W. K. et al, Experimental Studies on Natural Smoke Filling in Atria, Journal of Fire Science, Vol. 18, 2000, pp. 84-103.
18. Chow, W. K., “A Comparison of the Use of Fire Zone and Field Models for Simulating Atrium Smoke-filling Processes”, Fire Safety Journal, Vol. 25, 1995, pp. 337~353.
19. Chow, W. K., “Smoke Development and Engineering Aspects of Smoke-Extraction Systems for Atria in Hong Kong”, Fire and Materials, Vol. 17, 1993, pp. 71~77.
20. Chow, W. K., Lo, Anthony C. W., “Scale Modelling Studies on Atrium Smoke Movement and the Smoke Filling Process”, Journal of Fire Prot. Engr. Vol. 7, No. 2, 1995, pp. 55~64.
21. Chow, W. K., Y. Z. Li, E. Cui, R. Huo, “Natural Smoke Filling in Atrium with liquid pool fires up to 1.6MW”, Building and Environment, Vol. 36, Issue 1, 2001, pp. 121-127.
22. Cooper, L. Y., An Experimental Study of Upper Hot Layer Stratification in Full-Scale Multiroom Fire Scenarios, Journal of Heat Transfer, Vol. 104, 1982, pp. 741-749.
23. Cooper, L. Y., Heat Transfer from a Buoyant Plume to an Unconfined Ceiling, Journal of Heat Transfer, Vol. 104, 1982, pp. 446-451.
24. Cox G., R. Chitty, “A Study of the Deterministic of Unbounded Fire Plumes”, Combustion and Flame, Volume 39, 1980, pp. 191~209.
25. Cox G., R. Chitty, “Some Source-Dependent Effects of Unbounded Fires”, Combustion and Flame, Volume 60, 1985, pp. 219~232.
26. Cox, G., “Combustion Fundamentals of Fire”, Academic Press, 1995.
27. CSIRO, “FIRECALC, Computer Software for the Fire Engineering Professional”, Australia, 1993.
28. Dillon, M. E., “Case Study of Smoke Control System Testing foe a Large Enclosed Stadium”, ASHRAE Transactions, Vol. 100, Part 2, 1994, pp. 878~892.
29. Drysdale Dougal, “An Introduction to Fire Dynamics”, John Wiely and Sons Ltd., 1985.
30. Elovitz, David M, “Evaluating Smoke Management in a Large Volume Space”, ASHRAE Transactions, Vol. 106, Part 1, 200.
31. Emmerich, Steven J., McGrattan, Kevin B., “Application of a Large Eddy Simulation Model to Study Room Airflow”, ASHRAE Transactions, Vol. 104, Part 1, 1998.
32. Fire Code Reform Centre Limited, “Fire Engineering Guidelines – First Edition”, Australia, March, 1996.
33. George W. K., “Turbulence Measurements in an Axisymmetric Buoyant Plume”, International Journal of Heat and Mass Transfer, Vol. 20, 1977, pp. 1145~1154.
34. Hagglund, B., Jansson, R., Nireus, K., “Smoke Filling Experiments in a 6*6*6 Meter Enclosure”, FOA Rapport C20585-06, Forsavrets Forskningsanstalt, Sweden, September 1985.
35. Hansell, G. O. and Morgan, H. P., “Design Approaches for Smoke Control in Atrium Buildings”, Building Research Establishment Report, Fire Research Station, Building Research Establishment, U.K., 1993.
36. Hasemi, Y., Tokunaga, Fire Safety Science and Technology, Vol. 4, 1984.
37. Heakestad, G. and M. A. Delichatsios, “The Initial Convective Flow”, Proc. 17th International Symposium on Combustion, The Combustion Institute, Pittsburg, 1978, pp. 1113~1123.
38. Heskestad G., “Fire Plume Air Entrainment according to Two Competing Assumptions”, 21th Symposium on Combustion, The Combustion Institute, 1986, pp. 111~120.
39. Heskestad G., “Letter to the editor”, Fire Technology, Vol. 27, No. 2, 1991, pp. 174-185.
40. Heskestad G., “Note on Maximum Rise of Fire Plumes in Temperature-stratified Ambients”, Fire Safety Journal, Vol. 15, 1989, pp. 271~176.
41. Hinkley, P. L., “Rates of ‘Production’ of Hot Gases in Roof Venting Experiments”, Fire Safety Journal, Vol. 10, 1986, pp. 57~65.
42. K. H. Yang, J. N. Lee, “Analysis of Performance-based Smoke Management System Design in a Shopping Mall”, International Journal on Architectural Science, Vol. , 2001.
43. Klote, J. H., “Method of Predicting Smoke Movement in Atria With Application to Smoke Management”, NISTIR 5516: National Institute of Standards and Technology, Gaithersburg, MD, U.S.A., November, 1994.
44. Klote, John H., “New Developments in Atrium Smoke Management”, ASHRAE Transactions, Vol. 106, Part 1, 2000.
45. Klote, John H., “Prediction of Smoke Movement in Atria: Part I – Physical Concepts”, ASHRAE Transactions, Vol. 103, Part 2, 1997.
46. Klote, John H., “Prediction of Smoke Movement in Atria: Part II –Application to Smoke Management”, ASHRAE Transactions, Vol. 103, Part 2, 1997.
47. Kung, H. C., Stavrianidis, P., Proc. 19th International Symposium on Combustion, 1982, pp. 905.
48. Launder, B. E., Spalding, D. B., “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Energy, Vol. 3, 1974, pp. 269~289.
49. Lougheed, Gary D., Hadjisophocleous, George V., “Investigation of Atrium Smok Exhaust Effectiveness”, ASHRAE Transactions, Vol. 103, Part 2, 1997.
50. McCaffrey B. J., “Momentum Implications for Buoyant Diffusion Flames”, Combustion and Flame, No. 52, 1983.
51. McGrattan, K. B., Baum, H. R., Rehm, R. G., “Large Eddy Simulation of Smoke Movement”, Fire Safety Journal, Vol. 30, 1998, pp. 161~178.
52. McGrattan, Kevin B., Baum, Howard R., Rehm, Ronald G., Hamins, Anthony, Forney, Glenn P., “Fire Dynamics Simulator – Technical Reference Guide”, NISTIR 6467, National Institute of Standards and Technology, Gaithesburg, MD, 2000.
53. McGrattan, Kevin B., Forney, Glenn P., “Fire Dynamics Simulator – User’s Manual”, NISTIR 6469, National Institute of Standards and Technology, Gaithesburg, MD, 2000.
54. Milke, James A., “Smoke Management for Covered Malls and Atria”, Fire Technology, August, 1990, pp. 223~245.
55. Milke, James A., Mowrer Frederick W., Computer-Aided Design for Smoke Management in Atria and Covered Malls, ASHRAE Transactions, Vol. 100, 1994, pp. 448-456.
56. Morgan H. P., Hansell, G. O., Atrium Buildings: Calculating Smoke Flows in Atria for Smoke-control Design, Fire Safety Journal, Vol. 12, 1987, pp.9-35.
57. Morgan, H. P., “Smoke Control Methods in Enclosed Shopping Complexes of One or More Storeys: A Design Summary”, Building Research Establishment Report, 1979.
58. Morton, B. R., Taylor, Sir Geoffrey & Turner, J. S., Proc. Roy. Soc. A, Vol. 234, No. 1, 1956.
59. Mowrer, Frederick W., “Lag Times Associated with Fire Detection and Suppression, Fire Technology, Vol. 26, 1990, pp.244-265.
60. Mulholland, G., Handa, T., Sugawa, O., Yamamoto, H., “Smoke Filling in an Enclosure”, Paper 81-HT-8, ASME, 1981.
61. Nelson, H, “FPETOOL: Fire Protection Engineering Tools for Hazard Estimation”, NISTIR 4380, National Institute of Standards and Technology, Gaithesburg, MD, 1990.
62. Newman Jeffrey S., “Principles of Fire Detection”, Fire Technology, Vol. 24, No. 2, 1988, pp. 116-127.
63. NFPA, 1995. “NFPA 101: Life Safety Code”, National Fire Protection Association.
64. NFPA, 1995. “NFPA 204M: Guide for Smoke and Heat Venting”, National Fire Protection Association.
65. NFPA, 1995. “NFPA 92B: Guide for Smoke Management Systems in Malls, Atria, and Large Areas”, National Fire Protection Association.
66. Nowler, S. P., “Enclosure Environment Characterization Testing for the Base Line Validation of Computer Fire Simulation Codes”, NUREG/CR-4681, SAND 86-1296, Sandia National Laboratories, March, 1987.
67. Poreh, M., Tsuei, Y. G., and Cermak, J. E., “Investigation of a turbulent Radial Wall Jet”, ASME Jounal of Applied Mechanics, June 1967, pp. 457~463.
68. Rho, J. S., Ryou, H. S., “A Numerical Study of Atrium Fires Using Deterministic Models”, Fire Safety Journal, Vol. 33, 1999, pp. 213~229.
69. Ricou, F. P., Spalding, D. B., “Measurements of Entrainment by Axisymmetrical Turbulent Jets”, Journal of Fluid Mechanics, Vol. 9, 1961, pp. 21~32.
70. Rouse, H., C. S. Yih, Humphreys, H. W., Tellus, Vol. 4, 1952, pp. 201.
71. Smagorinsky, J., “General Circulation Experiments with the Primitive Equations, I, The Basic Experiment”, Monthly Weather Rev., Vol. 91, 1963, pp. 99~164.
72. Stroup, D. W., Using Performance-based Design Techniques to Evaluate Fire Safety in Two Government Buildings, 2nd International Conference on Performance-based Codes and Fire Safety Design Methods, Maui, Hawaii, May 3-9, 1998.
73. Tanaka T. and T. Yamana, “Smoke Control in Large Scale Spaces”, (Part 2: Smoke Control in Large Scale Spaces), Fire Science and Technology, Vol. 5, No. 1, 1985, pp. 41~54.
74. Tanaka T. and T. Yamana, “Smoke Control in Large Scale Spaces”, (Part 1: Analytic Theories for Simple Smoke Control Problems), Fire Science and Technology, Vol. 5, No. 1, 1985, pp. 31~40.
75. Tanaka T., Fujita T. and Yamaguchi J., “Investigation into Rise Time of Buoyant Fire Plume Fronts”, International Journal of Engineering Performance-Based Fire Codes, Volume2, Number 1, 2000, pp. 14~25.
76. Tanaka T., T. Fujita, and J. Yamaguchi, “Investigation into Rise Time of Buoyant Fire Plume Fronts”, International Journal on Engineering Performance-Based Fire Codes, Vol. 2, No. 1, 2000, pp. 14~25.
77. Tennekes, H., Lumley, J. L., “A First Course in Turbulence”, The Massachusetts Institute of Technology Press, 1972.
78. Thomas P. H. et al, “Investigations Into the Flow of Hot Gas in Roof Venting”, Fire Research Technical Paper No. 7, Department of Scientific and Industrial Research and fire Offices Committee, Joint Fire Research Organization, London, 1963.
79. Thomas, P. H., “The Distribution of Temperature and Velocity Due to Fires Beneath Ceilings”, F. R. Note 141, Fire Research Station, Boreham Wood, Herts, England, 1955.
80. Turner J. S., “The ‘Starting Plume’ in Neutral Surroundings”, Journal of Fluid Mechanics, Vol. 13, 1962, pp. 356~368.
81. Veldman, C. C., Kubota, T. and Zukoski, E. E., “An Experimetal Investigation of the Heat Transfer from a Buoyant Gas Plume to a Horizontal Ceiling – Part I: Unobstructed Ceiling”, Cal. Institute of Technology, report prepared for NBS/CFR, NBS-GCR-77-97, 1975.
82. Yih, C. S.: Proc. U. S. National Cong. App. Mech., 1952, p941.
83. Yokoi, S., “The Use of Models in Fire Research”, Publication No. 786, National Academy of Sciences, National Research Council: Washington, D. C., 1961, pp. 186~206.
84. Zhang Wei, Chen Qingyan, “Large Eddy Simulation of Indoor Airflow with a Filtered Dynamic Subgrid Scale Model”, International Journal of Heat and Mass Transfer, Vol. 43, 2000, pp. 3219~3231.
85. 中國計劃出版社,”中華人民共和國之高層民用建築設計防火規範”, 北京,中華人民共和國,1997.
86. 內政部,”各類場所消防安全設備設置標準”,1996.
87. 日本建築中心,”新•建築防災計畫指針”,1996.
88. 田中哮義,”建築火災安全工學入門”, 日本建築中心,1993.
89. 田中哮義,”煙舉動ズ關エペ簡易ズ問題シ預測方法”,建築設備シ配管工事,第33卷第8號,1995, pp. 58~63.
90. 田中哮義,山名俊男,”大規模ス空間ズ於んペ煙ソ制御”,災害ソ研究,第17卷,1995, pp. 142~151.
91. 石野、田中、吉田、小島、金谷,”ヤЬэヨу空間ズ於んペ煙ソ制御(ガソ2 煙性狀ソ支配因子シ煙制御效果ソ預測)”,日本火災學會研究發表會概要集,1991.
92. 李元洲、霍然,”中庭內大功率火災下的煙氣充填實驗研究”,’99 城市火災安全國際學術會議,中國黃山,1999,pp. 177~183.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code