Responsive image
博碩士論文 etd-0710102-121544 詳細資訊
Title page for etd-0710102-121544
論文名稱
Title
高精度之光纖套管構裝與檢測系統
High Precision Fiber-Solder-Ferrule Packaging and Inspection System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
50
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-25
繳交日期
Date of Submission
2002-07-10
關鍵字
Keywords
光纖套管構裝、引線式盒式構裝、自動檢測
Fiber-Solder-Ferrule Packaging, Automation Inspection System, Mirror Application
統計
Statistics
本論文已被瀏覽 5712 次,被下載 1929
The thesis/dissertation has been browsed 5712 times, has been downloaded 1929 times.
中文摘要
隨著頻寬日益漸增的需求,具有高可靠度的光電元件被期許能提供不中斷的服務來處理各種訊號的連結。利用光訊號來傳遞訊息的光通訊系統中,包含將電轉換成光訊號的雷射二極體傳輸模組、在遠距離的傳送中將訊號放大的放大模組與能將光轉回電訊號的光電二極體接收模組。在這些光電轉換的過程中,各模組中的耦光效率扮演極著為重要的角色,它是通訊品質好壞重要的因素。以傳輸模組而言,耦光效率是指雷射二極體打出的光耦入光纖中的比率。所以,光纖必須盡可能的對準雷射二極體以確保得到高的耦光效率。
在高頻的光電模組中引線式雙排線型與蝶式型的盒式構裝最廣為使用。在盒式構裝中的引線式尾端是由末端鍍金的光纖錫焊在套管中所形成,再由雷射焊接接和在雷射二極體前。不論光纖被固定在套管中何處,都會先動態搜尋出具有最高耦光效率的位置,套管再被焊接在雷射模組上。但過去研究指出溫度循環測試後,焊錫中殘留應力重新分佈與潛變現象會將光纖推向套管的幾何中心,而這微小的位移對耦光效率有顯著的影響。這現象隨著光纖與套管的偏心量增加而更嚴重。一個減少雷射模組中耦光位置偏移的最佳方法是將光纖錫焊時固定在套管的幾何中心。
本篇論文發展出一套可以自動構裝引線式元件的系統,光纖將被錫焊在套管中心附近,偏心量可少於20μm。而這方法是使用一般文獻中CCD作為位置迴授裝置的基本架構下,提出無法達到精度要求的主要誤差源分析與補償方法。這篇論文的最後結果平均偏移量由以往的80μm改善到。根據過去研究資料顯示這樣得偏移量可以在溫度循環測試後讓耦光效率還保持在90%以上。未來工作是繼續補償更小的誤差源,以獲得更小的偏移量。


Abstract
With ever-increasing demands for high-speed data transmission and device capacity to handle various telecommunication data links, the high reliability of these transmission devices is expected for uninterrupted service. A typical optical communication system consists of transmitters in which laser diodes convert electrical signals into light signals, optical fibers with a few pumps transmitting and maintaining these light signals over long distances, and receivers in which photodiodes convert the light signals back into an electronic form. The efficiency of optoelectronic devices in a communication system, which include transmitters and receivers, plays the most important role in determining the quality and the bandwidth of a communication system. For transmitters, the efficiency is defined as the ratio of the light entering the optical fiber to the light generated by the laser diode. Therefore, the optical fiber should be aligned as precisely as possible with the laser diode to ensure the high efficiency.
For high performance optoelectronic devices, box-type packages including the dual-in-line package (DIP) and butterfly package with fiber-solder-ferrule (FSF) are widely used. An optical fiber with a metallized end is soldered inside a ferrule tube to form the FSF. The FSF is joined on a u-channel mount in front of laser diode by laser welding. No matter where the fiber locates in the ferrule tube, the place for maximum coupling power can be dynamically measured and then the FSF is fixed. But, researches have shown that the redistribution of residual stress and the stress relaxation of creep phenomenon within the solder will push the fiber shift to the geometrical center of the ferrule and the shift reduces the coupling efficiency of laser module after temperature cycle testing. The efficiency is worse when the initial fiber eccentric offset increased. An optimum approach for reduction of the fiber alignment shift in laser module is to solder the fiber near to the center of the ferrule.
A method for automating the FSF packaging process has been developed to fix the fiber within less than 20um of the center of the ferrule. This method makes use of CCD cameras as position sensors to locate the fiber, and compensates all the major sources of inaccuracy resulting from a typical CCD-based packaging system. The accuracy of the fiber position is highly improved from 80um by traditional packaging process to 20um shown in the experiments. Further work is underway to better the accuracy by compensating the minor sources of inaccuracy.


目次 Table of Contents
Contents 1
List of Figures 2
List of Tables 4
摘要 5
Abstract 6
Chapter 1 Introduction 7
1.1 Research Motivation and Purpose 7
1.2 Problem Statement 12
1.3 Thesis Overview 14
Chapter 2 CCD-based inspection method 15
2.1 Fiber Gripper Design for Side1 15
2.2 Side1 Position Detection 18
2.3 Capillary Force and Solder Voids Improvement 21
Chapter 3 Error Analysis and Proposed Method 25
3.1 Positioning error 25
3.2. Image inspection error 26
3.2.1. Coaxial error of the projection 26
3.2.2. Coaxial error of image distortion 26
3.2.3. Image blur 28
3.3 Platform error 29
3.3.1 Shrinkage 29
3.4 Proposed Method 31
3.4.1 The Side2 position 31
3.4.2 Coaxial image projection 35
3.4.3 Shrinkage 35
Chapter 4 Experiments and Results 36
4.1 Experimental Setup 36
4.2 Results 37
Chapter 5 Conclusion and Further Work 45
5.1 Conclusion 45
References 49

參考文獻 References
[1] Palais, Joseph C., Fiber optic communications. Upper Saddle River, N.J.: Prentice Hall, 1998.
[2] D. S. Alles, “Trends in laser packaging,” in Proc. 40th ECTC, pp.185–192, 1990.
[3] J. H. Kuang, M. T. Sheen, S. C. Wang, C. H. Chen, and W. H. Cheng, “Crack formation mechanism in laser-welded Au-coated Invar materials for semiconductor laser packaging,” IEEE Trans. Comp., Hybrids, Manufact. Technol., pp. 94–100, 1999.
[4] E. Suhir, “Thermally induced stresses in an optical glass fiber soldered into a ferrule,” J. Lightwave Techol., vol. 12, pp. 1766–1770, 1994.
[5] W. H. Cheng, Y. D. Yang, S. C. Wang, S. Chi, M. T. Sheen, and J. H. Kuang, “Effect of Au thickness on laser beam penetration in semi-conductor laser packages,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 20, pp. 396–402, 1997.
[6] W. H. Cheng, M. T. Sheen, J. H. Kuang, and C. H. Chen, “The principle cause of crack defects in optoelectronic materials with phosphorus-con-taining underlayer,” J. Electron. Mater., vol. 28, pp. 50–56, 1999.
[7] M. Shaw, R. Galeotti, G. Coppo, “Method of fixing an optical fiber in a laser package,” IEEE Electronic Components and Technology Conference, vol. 51, pp. 1441–1446, 2001.
[8] C. Basaran and R. Chandaroy, “Finite element simulation of the temper-ature cycling tests,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 20, pp. 530–536, 1997.
[9] W. H. Cheng, M. T. Sheen, C. P. Chien, H. L. Chang, and K. J. Kuang, “Reduction of fiber alignment shifts in laser module packaging,” J. Lightwave Technol., vol. 18, pp. 842–848, June 2000.
[10] Peter Mueller, Bernd Valk, “Automated Fiber Attachment for 980nm Pump Modules,” IEEE Electronic Components and Technology Conference, vol. 18, pp. 5–9, 2000.
[11] W. H. Cheng, M. T. Sheen, C. P. Chien, H. L. Chang, and K. J. Kuang, “Fiber alignment shift formation mechanisms of fiber-solder-ferrule joints in laser module packaging,” J. Lightwave Technol., vol. 18, pp. 1177–1184, June 2001.
[12] T. Lyman, Ed., Metals Handbook, 8thed. Metals Park, OH: American Society for Metals, vol. 8, pp. 266–267, 1976.
[13] R. Chanchani and P. M. Hall, “Temperature dependence of thermal expansion of ceramics and metals for electronic packages,” IEEE Trans.Comp., Hybrids, Manufact. Technol., vol. 13, pp. 743–750, Dec. 1990.
[14] “Bellcore Reliability Assurance Practices for Optoelectronic Devices in Loop Applications,” pt. 1, TA-TSY-000 983, Jan. 1990.
[15] Wang Qian; Lee, S.-W.R.; Cao Yuwen; Ma Jusheng, “Study on the interfaces between copper alloys for lead frame and Sn-Pb solder alloys,” Electronic Materials and Packaging, (EMAP 2000) International Symposium on pp. 388 –390, 2000.
[16] User Guide, MARC 6.3, MARC Analysis Research Corporation, Palo Alto, CA, 1996.
[17] Ramesh Jain, Rangachar Kasturi, “Machine Vision,” McGraw-Hill, Kathryn Porzio, 1995.
[18] User Guide, Course Software Vision 1.0, LabVIEW Machine Vision and Image Processing Course Manual, NI, 1998.
[19] Jean-Marc Verdiell, Jonas Webjorn, and Robert Kohler et al, “Automated Opto-Electronic Packaging for 10Gb/s Applications,” IEEE Electronic Components and Technology Conference, vol. 51, pp. 429–432, 2001.
[20] Deere Avenue et al, “Automation Manufacturing Systems Technology for Opto-Electronic Device Packaging,” IEEE Electronic Components and Technology Conference, vol. 50, pp. 10–14, 2000.
[21] C.R. Witham et al, “Fiber-Optic Pigtail Assembly and Attachment Shift Using a Low-Cost Robotic Platform,” IEEE Electronic Components and Technology Conference, vol. 50, pp. 21–25, 2000.
[22] Michael R. Matthews et al, “Optical Components-The New Challenge in Package,” IEEE Trans. Comp., Hybrids, Manufact. Technol., vol. 13, pp. 798–805, 1990.
[23] C. J. Thwaites, “Capillary Joining-Brazing and Soft-Soldering,” John Wiley & Sons Ltd., 1982.
[24] 張所鈜、陳伯睿..等,“影像輔助光纖耦合量測及組裝控制”,第四屆全國機構與機器設計學術研討會,pp. 127–134, 2001.
[25] 陳建宏、章鴻倫..等,“錫焊固定光纖套管之半導體雷射構裝研究”,光電工程期刊,vol. 64, pp. 9–13, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code