Responsive image
博碩士論文 etd-0710102-132227 詳細資訊
Title page for etd-0710102-132227
論文名稱
Title
自然環保冷媒應用在空調系統之最佳化模擬與分析
Optimal Simulation and Analysis of the Refrigerant R-600a Applied to an Air-Conditioning System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-03
繳交日期
Date of Submission
2002-07-10
關鍵字
Keywords
最佳化、冷凍循環、環保冷媒
natural refrigerants, refrigerationcycle, optimization
統計
Statistics
本論文已被瀏覽 5692 次,被下載 7699
The thesis/dissertation has been browsed 5692 times, has been downloaded 7699 times.
中文摘要
本研究將針對自然環保冷媒R-600a之空調系統進行最佳化模擬與分析。在系統整體性能評估上,以可用能分析(Exergy Analysis),結合熱傳及流力之理論,探討其在空調系統各元件中之轉換、傳遞及摧毀之情形,並針對可用能損失較大的元件著手進行研究分析,以使能有效的提升系統整體之性能,進而達到省能之目標。
文中針對不同之系統設計參數,如蒸發器、冷凝器管徑及冷卻空氣流速等參數,尋求系統整體之最小熵產生率及其對應之最佳管徑。由數值模擬結果可知,在各操作條件及蒸發管管徑固定下,在冷凝管管徑1.0~1.2cm間,系統熵產生率呈現先降後升的趨勢,約在蒸發管管徑1.1cm附近有最小值,即在此處可用能之摧毀最小,而系統整體之COP及EER值亦在相同處有最大值。相對的,在冷凝管管徑固定下,系統熵產生率隨蒸發管管徑變化之趨勢與前者大致相同,亦在冷凝管管徑約1.1cm處有最小值。由上述可知,使用R-600a之空調系統在室外溫度 ,室內設定溫度 下,本分析最佳之熱交換器圓形直管管徑約為1.1cm,在此管徑下,系統整體之可用能損失最小。

關鍵字: 環保冷媒、冷凍循環、最佳化

Abstract
The optimizations of air-condition systems using naturalrefrigerants R-600a are studied in this thesis. The theories including the exergy analysis, heat transfer and fluid mechanics are combined together to study the exergy transfer and destroy in each component.
The optimizing parameters in this research include cooling air velocities, the tube diameters of evaporator and condenser. If all the conditions remain constant expect the tube diameter of evaporator, the numerical results display that the values of the total entropy generation rate with R-600a decrease from tube diameter 1.0 cm to 1.1 cm and increase from 1.1 cm to 1.2 cm. The tube diameter of evaporator and condenser at a minimum value of total entropy generation rate is 1.1cm for the simulation conditions. Besides, the coefficient of performance and the energy efficiency ratios also have maximum values at the tube diameter. If all the conditions remain constant expect the tube diameters of condenser, the tendencies of total entropy generation rate arethe same as those in evaporator.

目次 Table of Contents
目錄
摘要……………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
目錄……………………………………………………………………Ⅲ
圖目錄…………………………………………………………………Ⅵ
表目錄…………………………………………………………………Ⅸ
符號說明………………………………………………………………Ⅹ

第一章 緒論…………………………………………………...1
1.1 前言…………………………………………………………………1
1.2 文獻回顧……………………………………………………………2
1.3 研究背景及目的……………………………………………………7

第二章 蒸氣壓縮冷凍循環(VCR)之熱力分析………………9
2.1 蒸氣壓縮冷凍循環之基本理論……………………………………9
2.1.1 理想VCR循環分析………………………………………...9
2.1.2 實際(VCR)循環分析……………………………………….11
2.1.3 壓縮過程之熱力性質分析…………………………………12
2.2 冷媒之熱物性質分析……………………………………………...12
2.3 本空調系統模擬之理論模式分析………………………………...15
2.4 VCR循環之能源效率比(EER)及性能係數(COP)分析………...17
第三章 熱傳理論及最佳化分析……………………………20
3.1 相變化熱傳………………………………………………………...20
3.2 管內雙相區熱傳係數及壓降之計算……………………………...20
3.2.1 雙相區熱傳係數之計算……………………………………21
3.2.2 雙相區管內壓降之計算……………………………………27
3.3 管內單相區熱傳係數及壓降之計算……………………………...31
3.4 管外空氣側熱傳係數及壓降之計算……………………………...32
3.5 總熱傳係數之計算………………………………………………...34
3.6 結合熱力、流力及熱傳之(Exergy Analysis)……………………..37
3.6.1 Exergy Analysis……………………………………………...37
3.6.2 室內熱負載之模擬條件與說明……………………………43
3.6.3 數值模擬流程與步驟………………………………………45
第四章 結果與討論…………………………………………50
4.1 各项設計參數對系統元件及整體性能之影響…………………...51
4.2 蒸發管管外徑對系統元件及整體性能之影……………………...52
4.3 冷凝管管外徑對系統元件及整體性能之影……………………...55
4.4 空氣流速對系統整體性能之影響………………………………...56
4.5 可用能分析(Exergy Analysis)……………………………………..57
第五章 結論與建議…………………………………………..60
5.1 結論………………………………………………………………..60
5.2 建議………………………………………………………………..61
參考文獻……………………………………………………………….62
圖總成………………………………………………………………….65
表總成………………………………………………………………….85
附錄一………………………………………………………………….88
參考文獻 References
參考文獻
1. B. A. Younglove and J. F. Ely, " Thermophysical properties of fluids. Ⅱ. Methane, ethane, propane, isobutane and normal butane " Jol. Phy. Chem. Refer. Data, Vol 16, pp. 577-598, 1987
2. G. D. Mathur, " Heat Transfer Coefficients for Propane (R-290), Isobutane (R-600a), and 50/50 Mixture of Propane and Isobutane " ASHRAE Transactions:Symposia, pp. 1159-1172, 1998
3. M. O. McLinden, and D. A. Didion, "Quest for Alternatives,” CFCs: Time of Transition, American Scociety of Heating, Refrigerating, and Air-Conditioning Engineers, Inc, pp. 69-78, 1989.
4. M. A. Hammad and M. A. Alsaad, " The use of hydrocarbon mixtures as refrigerants in domestic refrigerators " Applied Thermal Engineering 19 (1999) 1181-1189
5. P. K. Bansal and B. Purkayastha, "An NTU- model for alternative refrigerants"Int. J. Refrig., Vol 21, No 5, pp. 381-397, 1998.
6. Richard B. Stewart, Richard T. Jacobsen and Steven G. Penoncello, Ashrae Thermodynamic Properties Of Refrigerants, pp. 83~92, pp. 319~330, pp. 341~350, 1986
7. M. A. Alsaad and M. A. Hammad , " The application of propane/butane mixture for domestic refrigerators " Applied Thermal Engineering 18 (1998) 911-918
8. R. N. Richardson and J. S. Butterworth, " The Performance Of Propane/Isobutane Mixtures In A Vapour-Compression Refrigeration System " Int. J. Refrig., Vol 18, No 1, pp. 58-62, 1995.
9. R. W. James and J. F. Missenden, " The Use Of Propane In Domestic Refrigerators " Rev. Int. Froid., Vol 15, No 2, pp. 95-100, 1992.
10. W. M. Kays, and A. L. London, Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York, 1984.
11. J. F. Hamilton and J. L. Miller, " A Simulation Program for Modeling an Air-conditioning System, " ASHRAE Transactions, Vol. 88, Part 2,1985
12. Rich, D.G., "The effect of fin spacing on the heat transfer and friction performance of multi-row, smooth plate fin-and -tube heat exchangers, "ASHRAE Trans., Vol. 79, Pt. 2,pp. 137-145,1973
13. Rich, D.G., "The effect of the number of tube rows on heat transfer performance of smooth plate-fin-tube heat exchangers, "ASHRAE Trans., Vol. 81Pt. 1pp. 307-317,1975
14. Gray, D. L. and Webb, R.L.,"Heat Transfer and Friction Correlations for Plate Fin-and-Tube Heat Exchangers Having Plain Fins",Proc. 8th Int. Heat Transfer Conference, SanFrancisco,1986
15. V. V. Klimenko, "A Generalized Correlation for Two-Phase Forced Flow Heat Transfer," Int. J. Heat Mass Transfer, Vol. 33, pp. 541-552, 1990.
16. M. M. Shah, "A General Correlation for Heat Transfer during Film Condensation Inside Pipes ," Int. J. Heat Mass Transfer, Vol. 22, pp. 547-556, 1979.
17. S. G. Kandlikar, "A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes," Journal of Heat Transfer, Vol. 112, pp. 219-228, 1990.
18. J. P. Wattelet, J. C. Chato, A. L. Souza, and B. R. Christoffersen, "Evaporative Characteristics of R-12, R-134a, and A Mixture at Low Mass Fluxes," ASHRAE Transactions: Symposia, Part 1, pp. 603-615, 1994.
19. C. Y. Yang, R. L. Webb, "Friction Pressure Drop of R-12 in Small Hydraulic Diameter Extruded Aluminum Tubes with and without Micro-fins," Int. J. Heat Mass Transfer. Vol. 39, No. 4, pp. 801-809, 1996.
20. L. M. Chamra, R. L. Webb, and M. R. Randlett, "Advanced Micro-fin Tubes for Evaporation," Int. J. Heat Mass Transfer. Vol. 39, No. 9, pp. 1827-1838, 1996.
21. 郭欣隴,實際空調系統之熱力及熱傳模擬與分析,碩士論文,國立中山大學機械工程研究所,中華民國八十七年六月。
22. 王啟川、廖建順,”半乾溼鰭管式熱交換器之模擬分析”,中國機械工程學會第十四屆全國學術研討會論文集,95- 103頁,國立中央大學,八十六年十二月。
23. 林振源、顏貽乙,”HC 冷媒特性與應用情形”,中國冷凍空調雜誌,77- 82頁,1998年6月
24. 謝曉星,數值方法在工程及科學上之應用,高立圖書有限公司, pp. 126-129, 1995.
25. J. C. Chato, J. Am. Soc. Refrig. Air Cond. Eng., February 1962, pp. 52.
26 W. W. Akers, H. A. Deans, and O. K. Crosser, "Condensing Heat Transfer within Horizontal Tubes," Chem. Eng. Prog. Symp. Ser., Vol. 55, No. 29, pp. 171, 1958.
27. P. Griffith, "Pressure Drop inside Tubes with Condensation, “ Handbook of Multiphase Systems,” pp. 5-26, 1982.
28. J. A. Tichy, J. Duque-Rivera, N. A. Macken, and W. M. B. Duval, "An Experimental Investigation of Pressure Drop in Force-Convection Condensation and Evaporation of Oil-refrigerant Mixtures," ASHRAE Tansactions, Vol. 92, Part 2, pp. 461-472, 1986.
29. F. W. Dittus, and L. M. K. Boelter, Univ. Calif. Berkeley Publ. Eng. , Vol. 2, p.433, 1930.
30. Adrian Bejan, Entropy Generation Minimization - the method of thermodynamic optimization of finite-size systems and finite-time process, CRC press, New York, 1996.
31. 吳俊逸,R600-a及R-290自然環保冷媒空調系統之熱流循環特性模擬與分析,碩士論文,國立中山大學機械工程研究所,中華民國八十九年六月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code