Responsive image
博碩士論文 etd-0710103-144403 詳細資訊
Title page for etd-0710103-144403
論文名稱
Title
用於微組裝之微爪機構設計與分析之研究
A Study on the Design and Analysis of Microgripper for Microassembly
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-22
繳交日期
Date of Submission
2003-07-10
關鍵字
Keywords
微爪機構、微組裝
3D working space, planar compliant microgripper, Microassembly, Microgripper
統計
Statistics
本論文已被瀏覽 5691 次,被下載 5392
The thesis/dissertation has been browsed 5691 times, has been downloaded 5392 times.
中文摘要
本文研究目標主要在探討結合微系統技術與一般特徵尺寸下的機構設計原理,發展一種便於微組裝的微爪機構,研究的範圍包含剛性結構及撓性整體結構。本研究先探討幾種不同原理的組裝技術,如靜電力、表面張力、磁力及雙薄膜的概念。而在剛體結構的設計方面,研究方向是空間中工作距離的大小及在單一的微爪機構元件上具有多重的夾取功能。在撓性結構的研究上,探討一般尺度的機構及微尺度的撓性機構在運動表現上的關係,相關結果可以作為進一步製程設計的參考。本文中提出一套轉換剛性機構為撓性機構之系統化流程,並可引申至微爪機構之設計在,完成以上相關系統化之微爪機構設計之後,將進行FEM分析了解微爪機構在作動時的應力狀態、被驅動時的內部溫度分佈、進行抓取微細物件時撓性接頭的扭曲變化情形等,以便修正之前所給定之微爪機構之系統尺寸。
Abstract
Most of the microgrippers developed in recent years still lack of the systematic mechanism design background in the overall design scope of microgripper. The main objective of this investigation is to find new possibilities of design concept in order to enhance the design scope of microgripper.
This thesis presents the design and analysis of microgripper for microassembly that are based on the mechanism design perspective, which particularly involves the 3-D working space and planar compliant microgripper. Several feasible solutions of the microgripper with 3-D working space are presented include the use of molten solder self-assembly, hinge mechanism, shape memory alloy, electrostatic-force assembly, and magnetic-force assembly. An atlas of 28 types of planar compliant linkages for two-finger microgripper is presented based on the systematic design procedure. The FEM simulation shows the preliminary satisfactory results that reveal the good agreement with the expected kinematic motion. It can be concluded that the mechanism design concept presented in this study can be integrated into the design work of micro scale actuating device.
目次 Table of Contents
TABLE OF CONTENTS

TABLE OF CONTENTS I
ABSTRACT OF THE THESIS IV
LIST OF FIGURES V
LIST OF TABLES VIII
LIST OF TABLES VIII
ACKNOWLEDGEMENTS IX
CHAPTER I INTRODUCTION 1
1.1 Background of MEMS and the Needs of Microgripper 1
1.2 Literature Review 2
1.2.1 Microgripper Based on Electrostatic Microactuators 3
1.2.2 Microgripper Based on Thermal Microactuators 4
1.2.3 Microgripper Based on Piezoelectric Microactuator 10
1.2.4 Microgripper Based on Electromagnetic Microactuator 11
1.2.5 Fabrication Processes Used To Realize Microgripper 12
1.3 Motivation and Description of Approach 13
1.4 Objective and Thesis Overview 14
CHAPTER II MICROGRIPPER FABRICATIONS 16
2.1 Surface Micromachining 16
2.1.1 Thin Film Technique 17
2.1.2 Photolithography 17
2.1.3 Etching Techniques 19
2.1.3.1 Wet Etching 20
2.1.3.2 Dry Etching 20
2.1.4 Doping techniques 22
2.1.5 Sacrificial Layer 23
2.1.6 Present Limitations of Surface Micromachining 24
2.2 Hexsil Process 25
2.3 Other High Aspect Ratio MEMS 25
2.3.1 Bulk Micromachining 25
2.3.2 Hinged Structures 26
2.3.3 Deep Reactive Ion Etching (DRIE) 27
2.3.4 LIGA 28
2.3.5 LIGA-Like Technique 28
CHAPTER III DESIGN AND ANALYSIS OF MICROGRIPPER 29
3.1. Introduction to Spatial Three-Finger Microgripper Design 29
3.1.1 Concept Design Based on Three Dimensional Working Space 31
3.1.2 Various Approach Principles Based on the Developed Microactuators 31
3.1.3 Theoretical Analysis and Finite Element Method (FEM) 38
3.1.4 Observation of Simulation Results and Discussions 42
3.1.5 Fabrication 46
3.2. Introduction to Planar Two-Finger Microgripper Design 47
3.2.1 Concept Design Based on Mechanism Approach 47
3.2.2 Transformation of Compliant Mechanism 49
3.2.3 Theoretical Analysis and Finite Element Method (FEM) 57
3.2.4 Observation of Simulation Results and Discussions 62
3.2.4.1 Stiffness Hierarchy 66
3.2.4.2 Compliant Microgripper Design with Stiffness Hierarchy 82
3.2.5 Fabrication 96
CHAPTER IV MICROGRIPPER BASED ON HEXSIL PROCESS 98
4.1 Current Challenging of Hexsil Processing Issues 98
4.2 Microgripper Fabrication Design Based on Hexsil Process 99
4.2.1 Preprocess Wafer Preparation 99
4.2.2 Silicon Wafer Mold Micromachining 100
4.2.3 Protective Layer Deposition 100
4.2.4 Sacrificial Layer Deposition 101
4.2.5 Structural Layer Deposition 101
4.2.6 Mold Ejection Release Etching 102
CHAPTER V CONCLUSION 107
5.1 Summary 107
5.2 Suggested Future Research 108
REFERENCES 110
APPENDIX I 116
APPENDIX II 118
參考文獻 References
REFERENCES
[1] Ayazi, F., and Najafi, K., 2000, “High Aspect-Ratio Polysilicon Micromachining Technology,” Sensors and Actuators, A, Vol. 87, pp. 46-51.
[2] Basrour, S., Robert, L., Ballandras, S., and Hauden, D., 1997, “Mechanical Characterization of Microgrippers Realized by LIGA Technique,” Transducers International Conference on Solid-State Sensors and Actuators, pp. 599-602.
[3] Belfiore, N. P., and Pennestri, E., 1997, “An Atlas of Linkage-Type Robotic Grippers,” Mechanism and Machine Theory, Vol. 32, No. 7, pp. 811-833.
[4] Carrozza, M. C., Menciassi, A., Tiezzi, G., and Dario, P., 1998, “The development of a LIGA-microfabricated gripper for micromanipulation tasks,” Journal of Micromechanics and Microengineering, Vol. 8, pp. 141-143.
[5] Chiao, M., and Lin, L. W., 2000, “Self-Buckling of Micromachined Beams Under Resistive Heating,” Journal of Microelectromechanical Systems, Vol. 9, pp.146-151.
[6] Chung, C. K., Lu, H. C., and Jaw, T. H., 2000, “High Aspect Ratio Silicon Trench Fabrication by Inductively Coupled Plasma,” Microsystem Technologies, Vol. 6, pp. 106-108.
[7] Comtois, J. H., and Bright, V. M., 1997, “Application of Surface-Micromachined Polysilicon Thermal Actuators and Arrays,” Sensors and Actuators, A, Vol. 58, pp. 19-25.
[8] Ehrfeld, W., Bley, B., Gotz, F., Hagmann, P., Maner, A., Mohr, J., Moser, H. O.,
Munchmeyer, D., Schelb, W., Schmidt, D., and Becker, E. W., 1987, “Fabrication of Microstructures Using the LIGA Process,” Proceedings IEEE Micro Robots and Teleoperators Workshop, Hyannis, MA, pp. 11/1-11/11.
[9] Fan, L. S., Tai, Y. C., and Muller, R. S., 1988, “Integrated Movable Micromechanical Structure for Sensors and Actuators,” IEEE Transactions on Electron Devices, Vol. ED-35, No. 6, pp. 724-730.
[10] Fan, L. S., Tai, Y. C., and Muller, R. S., 1989, “IC-Processed Electrostatic Micromotors,” Sensors and Actuators, A, Vol. 20, No. 1-2, pp. 49-55.
[11] Fan, L., Wu, M., Choquette, K., and Crawford, M., 1997, “Self-Assembled Microactuated XYZ Stages for Optical Scanning and Alignment,” International Conference On Solid-State Sensors and Actuators, Transducers ’97, Chicago, June 16-19, pp. 319-322.
[12] Fatikow, S., and Rembold, U., 1997, Microsystem Technology and Microrobotics, Springer, Berlin, pp. 69, 83.
[13] Feynman, R. P., 1992, “There’s Plenty Room at the Bottom,” Journal of Microelectromechanical Systems, Vol. 1, No. 1.
[14] Green, P. W., Syms, R. R. A., and Yeatman, E. M., 1995, “Demonstration of Three-Dimensional Microstructure Self-Assembly,” Journal of Microelectromechanical Systems, Vol. 4, pp. 170-176.
[15] Greitmann, G., and Buser, R. A., 1996, “Tactile Microgripper for Automated Handling of Microparts,” Sensors and Actuators, A, Vol. 53, pp. 410-415.
[16] Harsh, K. F., Bright, V. M., and Lee, Y. C., 1999, “Solder Self-Assembly for Three-Dimensional Microelectromechanical Systems,” Sensors and Actuators, A, Vol. 77, pp. 237-244.
[17] Her, I., and Midha, A., 1987, “A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis,” ASME Journal of Mechanisms, Transmissions, and Type Synthesis, Vol. 109, pp. 348-355.
[18] Her, I., and J. C. Chang, 1994, “A Linear Scheme for the Displacement Analysis of Micropositioning Stages with Flexure Hinges,” ASME Journal of Mechanical Design, Vol. 116, No. 3, pp. 770-776.
[19] Horsley, D. A., Cohn, M. B., Singh, A., Horowitz, R., and Pisano, A. P., 1998, “Design and Fabrication of an Angular Microactuator for Magnetic Disk Drives,” Journal of Microelectromechanical Systems, Vol. 7, No. 2, pp. 141-148.
[20] Huang, Q. A., and Lee, N. K. S., 1999, “Analysis and Design of Polysilicon Thermal Flexure Actuator,” Journal of Micromechanics and Microengineering, Vol. 9, pp. 64-70.
[21] Hui, E. E., Keller, C. G., and Howe, R. T., 1998, “Carbonized Parylene as a Conformal Sacrificial Layer,” Proceedings of the IEEE Solid-state Sensor and Actuator Workshop, Hilton Head, SC.
[22] Incropera, F. P., and Dewitt, D. P., 1996, Fundamentals of Heat and Mass Transfer 4th edn, New York, Wiley.
[23] Judy, J. W., 2001, “Microelectromechanical systems (MEMS) - Design, Fabrication, and Applications,” Journal of Smart Materials and Structures, Vol. 10, No. 6, pp.1115-1134.
[24] Keller, C. G., and Howe, R. T., 1995, “Nickel-Filled Thermally Actuated Tweezers,” Transducer 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, June 25-29, Vol. 2, pp. 552-555.
[25] Keller, C. G., and Howe, R. T., 1997, “Hexsil Tweezers for Teleoperated Microassembly,” IEEE 10th International Workshop on Micro Electromechanical Systems, Nagoya, Japan, pp. 72-77.
[26] Keller, C. G., 1998, “Microfabricated High Aspect Ratio Silicon Flexures,” Ph.D. Dissertation, Department of Material Science and Engineering, University of California at Berkeley.
[27] Kim, C. J., Pisano, A., and Muller, R., 1992, “Silicon-Processed Overhanging Microgripper,” Journal of Microelectromechanical Systems, Vol. 1, No. 1, pp. 31-36.
[28] Klaassen, E. H., Petersen, K., Noworolski, J. M., Logan, J., Maluf, N. I., Brown, J., Storment, C., McCulley, W., and Kovacs, G. T. A., 1995, “Silicon Fusion Bonding and Deep Reactive Ion Etching: A new Technology for Microstructures,” Proceedings of International Solid-State Sensors and Actuators Conference (Transducers’97), Stockholm, Sweden, June 25-29, pp. 556-559.
[29] Kovacs, G. T. A., 1998, Micromachined Transducers Sourcebook, WCB/McGraw-Hill, ISBN 0-07-290722-3.
[30] Lee, A. P., Ciarlo, D. R., Krulevitch, P. A., Lehew, S., Trevino, J., and Northrup, M. A., 2000, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Sensors and Actuators, A, Vol. 54, pp. 208-213.
[31] Lerch, P., Slimane, C. K., Romanowicz, B., and Renaud, P., 1996, “Modelization and Characterization of Asymmetrical Thermal Micro-Actuators,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 134-137.
[32] Madou, M., 1997, Fundamentals of Microfabrication, New York: CRC Press, Inc., ISBN 0-8493-9451-1, pp. 138-139.
[33] Mankame, N. D., and Ananthasuresh, G. K., 2001, “Comprehensive Thermal Modeling and Characterization of an Electro-Thermal-Compliant Microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 1-11.
[34] Markus, K. W., and Koester, D. S., 1994, “Multi-users MEMS process (MUMPs) Introduction and Design Rules,” MCNC Electron.
[35] McConnell, A. D., Uma, S., and Goodson, K. E., 2001, “Thermal Conductivity of Doped Polysilicon Layers,” Journal of Microelectromechanical Systems, Vol. 10, pp. 360-369.
[36] Moulton, T., and Ananthasuresh, G. K., 2001, “Micromechanical Devices with Embedded Electro-Thermal-Compliant Actuation,” Sensors and Actuators, A, Vol. 90, pp. 38-48.
[37] Muller, L., Howe, R. T., and Pisano, A. P., 2001, “High-Aspect-Ratio, Molded Microstructures with Electrical Isolation and Embedded Interconnects,” Microsystem Technologies, Vol. 7, pp. 47-54.
[38] Nogimori, W., Irisa, K., Ando, M., and Naruse, Y., 1997, “A Laser-Powered Microgripper,” Proceedings IEEE tenth Annual International Workshop, pp. 267-271.
[39] Pan, C. S., and Hsu, W. S., 1997, “An Electro-Thermally and Laterally Driven Polysilicon Microactuator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 7-13.
[40] Pister, K. S. J., Judy, M. W., Burgett, S. R., and Fearing, R. S., 1991, “Microfabricated Hinges: 1mm Vertical Features with Surface Micromachining,” Proc. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers’91), San Fransisco, CA, June 24-27, pp. 647-650.
[41] Que, L., Park, J. S., and Gianchandani, Y. B., 2001, “Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascaded Devices,” Journal of Microelectromechanical Systems, Vol. 10, pp. 247-254.
[42] Salim, R., Wurmus, H., Harnisch, A., and Hulsenberg, D., 1997, “Microgrippers Created in Microstructurable Glass,” Microsystem Technologies, Vol. 4, pp. 32-34.
[43] Seki, H., 1992, “Modeling and Impedance Control of a Piezoelectric Bimorph Microgripper,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 958-965.
[44] Sharpe, W. N., Yuan, B., and Vaidyanathan, R., 1997, “Measurement of Young’s Modulus, Poisson’s Ratio, and Tensile Strength of Polysilicon,” IEEE International Workshop on Microelectromechanical System, Nagoya, Japan, pp. 424-429.
[45] Suzuki, Y., 1996, “Flexible Microgripper and Its Application to Micro-measurement of Mechanical and Thermal Properties,” IEEE MEMS Proceedings Ninth Annual International Workshop, pp. 406-411.
[46] Tang, W. C., Nguyen, T. C. H., and Howe, R. T., 1992, “Laterally Driven Polysilicon Resonant Microstructures,” Sensors and Actuators, A, Vol. 20, No. 1-2, pp. 25-32.
[47] Thornell, G., Bexell, M., Scheweitz, J. A., and Johansson, S., 1995, “The Design and Fabrication of a Gripping Tool for Micromanipulation,” Transducers 95 The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors, pp. 388-391.
[48] Troisfontaine, N., Bidaud, P., and Morel, G., 1997, “A New Inter-Phalangeal Actuator for Dexterous Microgrippers,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1773-1778.
[49] Uma, S., McConnell, A. D., Asheghi, M., Kurabayashi, K., and Goodson, K. E., 2001, “Temperature Dependant Thermal Conductivity of Undoped Polycrystalline Silicon Layers,” International Journal of Thermophysics, Vol. 22, pp.605-616.
[50] Yan, D., Khajepour, A., and Mansour, R., 2003, “Modeling of two-hot-arm horizontal thermal actuator,” Journal of Micromechanics and Microengineering, Vol. 13, pp. 312-322.
[51] Yong, W. Y., and Liu, C., 1999, “Assembly of Micro-Optical Devices Using Magnetic Actuation,” Sensors and Actuators, A, Vol. 78, pp. 205-211.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code