Responsive image
博碩士論文 etd-0710103-174056 詳細資訊
Title page for etd-0710103-174056
論文名稱
Title
在不同成長溫度和披覆層厚度下的自聚性硒化鋅量子點之研究
Study of self-assembled ZnSe quantum dots under the influences of the growth temperature and cap layer thickness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-04
繳交日期
Date of Submission
2003-07-10
關鍵字
Keywords
硒化鋅、低壓有機金屬化學氣相沉積法、量子點
quantum dots, ZnSe, MOCVD
統計
Statistics
本論文已被瀏覽 5666 次,被下載 0
The thesis/dissertation has been browsed 5666 times, has been downloaded 0 times.
中文摘要
本研究利用有機金屬化學氣相沉積法,以S-K模式成長自聚性硒化鋅量子點於砷化鎵基板上,以原子力顯微鏡來探測表面的量子點與光激光譜(PL)來研究量子點之光學特性。改變自聚性硒化鋅量子點的成長溫度與硒化氫的流量,探討自聚性硒化鋅量子點之密度、高度與直徑等表面形貌。然後,在自聚性量子點上覆蓋不同厚度之披覆層,以光激光譜儀探討自聚性量子點的光學特性。
首先實驗結果顯示,硒化氫的流量會明顯影響自聚性硒化鋅量子點密度與成長溫度之關係。在硒化氫的流量為25 sccm時,當成長溫度由140℃增至380℃時,量子點密度反而增加至3.96×108 cm-2。當硒化氫的流量為30 sccm時,量子點成長溫度增加時,量子點密度並無明顯改變。在硒化氫的流量為40 sccm時,量子點密度隨著成長溫度增加而呈現下降之趨勢。
本研究在自聚性硒化鋅量子點上覆蓋一層硫化鋅。實驗結果指出第一,隨著硫化鋅披覆層厚度的增加,使自聚性量子點遭受到更多來自披覆層的壓力而造成,其光激光譜有明顯藍移的趨勢。第二,由於硫化鋅披覆層厚度的增加,硫化鋅披覆層提供了一些額外的載子給自聚性硒化鋅量子點,使得其光激光譜明顯的增強。第三,自聚性硒化鋅量子點的密度隨著硫化鋅披覆層厚度的增加而減少。本論文已成功在砷化鎵基板上成長高密度之自聚性硒化鋅量子點,並在其上覆蓋硫化鋅披覆層。在此基礎上,未來將可發展出多層量子點結構。

Abstract
In this thesis, ZnSe self-assembled quantum dots (SAQDs) was grown on GaAs substrate by organic-metal vapor phase epitaxy (OMVPE) with Stranski-Krastanow (S-K) growth mode. The contact-mode atomic force microscopy (AFM) and photoluminescence (PL) are used to measure the surface morphology and optical properties of ZnSe SAQDs, respectively.
Experimental data show that the flow rate of H2Se have a significant influence on the relation between the density and the growth temperature of ZnSe SAQDs. At the H2Se flow rate of 25 sccm, the density of ZnSe SAQDs increases up to 3.96×108 cm-2 as the growth temperature increase from 140℃ to 380℃. However, the growth temperature has a negligible effect of the density of ZnSe SAQDs at the flow rate of 30 sccm. At the H2Se flow rate of 40 sccm, the density of ZnSe SAQDs decreases as the growth temperature increases due to the coalescences of SAQDs.
Furthermore, a cap layer of ZnS was deposited on ZnSe SAQDs. Experimental data indicate that the increase of the thickness of ZnS cap layer results in blue-shifted emission due to the ZnSe SAQDs experience more biaxial strain. Besides, the ZnS cap layer provides an additional source of carriers, which thermalize to the ZnSe SAQDs before recombination, resulting in a significantly stronger photoluminescence signal. In AFM images, the density of ZnSe SAQDs decreases as the increase of the thickness of ZnS cap layer. In conclusion, we have successfully grown the high density of ZnSe SAQDs on the GaAs substrate and deposit the ZnS cap layer on it. Based on the technique, the multi-quantum dots will be developed in the future.

目次 Table of Contents
CONTENTS

CONTENTS I
LIST OF FIGURES Ⅳ
ABSTRACT Ⅷ

Chapter 1 Introduction

1.1 A basic concept of nanotechnology…………………………………..1
1.2 Characterization of quantum dots…………………………………….3
1.2.1 The density of states for quantum dots……………..……….….4
1.3 Formation of quantum dots…………………………………………..4
1.4 Quantum dot structures by self-assembling…………………………..8
1.5 Effect of dot size…………………………………………………….10
1.6 The potential device application of self-assembled
quantum dots……………………………………………………….11

Chapter 2 Experiments

2.1 The procedure of epitaxial growth…………………………….……18
2.2 Organic-metal vapor-phase epitaxy (OMVPE)……………….…….19
2.2.1 Cold wall system and single hot zone………………………...20
2.2.2 Simplicity, flexibility and versatility………..…………..…….21
2.2.3 Halid-free……………………………………….……..……...22
2.2.4 Stoichiometry easily controlled……….………..…….……….22
2.2.5 Low temperature and low pressure growth…………………...23
2.2.6 Capability of double heterostructure………………..…..…….24
2.3 Components of OMVPE………………………………...…....……..24
2.3.1 Design of growth reactor……………………………..….…....24
2.3.2 Reactant gases handling system………………………..…..…26
2.3.3 Heating system………………………………………..…..…..27
2.3.4 Exhaust disposal system………………………………..…..…27
2.3.5 Safety considerations…………………………………..….…..28
2.4 GaAs substrate preparation………………………………….…...….29
2.5 Characterization techniques……………………………….….….….30
2.5.1 Atomic Force Microscopy (AFM)………………….……......30
2.5.2 Photoluminescence (PL)……………………………….….....31

Chapter 3 Results and Discussion

3.1 Growth of ZnSe SAQDs on GaAs by LP-OMVPE…………………34
3.1.1 ZnSe SAQDs……………….………………………………..34
3.1.2 ZnSe SAQDs growth procedure……………………………..35
3.2 Study of ZnSe SAQDs by modulating the growth time of ZnS
buffer layer……………………………………………......….……37
3.3 Study of ZnSe SAQDs by modulating the growth time of
ZnSe SAQDs …………...………………………..……………......38
3.4 Study of ZnSe SAQDs under the influence of the growth
temperature………………………………………………………...41
3.4.1 Growth of ZnSe SAQDs with 25 sccm hydrogen selenium
flow rate………………………………...…………………….42
3.4.2 Growth of ZnSe SAQDs with 30 sccm hydrogen selenium
flow rate………………………………………………………43
3.4.3 Growth of ZnSe SAQDs with 40 sccm hydrogen selenium
flow rate………………....……………………………………43
3.5 Ostwald ripening effect of ZnSe SAQDs …………………….…….45
3.6 Characteristics of ZnSe SAQDs under the influence of cap layer thickness………………………………………………………...…46

Chapter 4 Conclusions………………………....…………………….50

REFERENCES.…………………………………………………………53
FIGURES……..………………………………………………………..58











LIST OF FIGURES

Figure 1.2-1 Variations in active regions in semiconductor lasers and
the density of states for bulk, quantum well, quantum wire,
and quantum dots……………………………………..…………58
Figure 1.3-1 (a) Frank-van der Merwe growth, (b) Volmer-Weber, and (c) Stranski-Krastanow growth……………………………………..59
Figure 1.4-1 Schematics of self-assembling in the Stranski-Krastanow
Growth mode……………………….………………………...…60
Figure 1.5-1 Effect of dot size on the excited states of electrons
and holes……………….………………………………………..61
Figure 2.1-1 The various processes during an epitaxial growth……...…62
Figure 2.3-1 Illustration of the OMVPE system………………………..62
Figure 2.3-2 Cross-section of the rectangle quartz tube………………...63
Figure 2.3-3 Vapor pressure of organometallic precursors…………...…63
Figure 2.5-1 Plot of atomic force……………………………………..…64
Figure 2.5-2 Possible PL emission……………………………………...65
Figure 3.1-1 The relations of band-gap and lattice constants, between
the barrier of SAQDs and substrate materials………...…….…..66
Figure 3.2-1 Growth parameters of ZnSe SAQDs at different ZnS
buffer layer growth time………………...….…….……….…….67
Figure 3.2-2 AFM images of ZnSe SAQDs at different ZnS buffer
layer growth time…………………………………….……….....68
Figure 3.2-3 The density of ZnSe SAQDs as a function of the ZnS
buffer layer growth time…………………………….…….….…69
Figure 3.3-1 Growth parameters of ZnSe SAQDs at different ZnSe
SAQDs growth time……………………………………….……70
Figure 3.3-2AFM images of ZnSe SAQDs at different ZnSe SAQDs
growth time……………………………………………….…….71
Figure 3.3-3 (a) Density, (b) diameter, and (c) height of ZnSe SAQDs
as a function of the ZnSe SAQDs growth time.……….………..72
Figure 3.3-4 77 K PL spectrum of 60 sec ZnSe SAQDs growth with
5 min ZnS buffer layer………………………………………….73
Figure 3.3-5 77 K PL spectra wavelength and intensity as a function
of ZnSe SAQDs growth time with 5 min ZnS buffer layer…….74
Figure 3.4-1 Growth parameters of ZnSe SAQDs at different ZnSe SAQDs growth temperatures. The flow rate of hydrogen
selenium is fixed at 25 sccm……………………………..….…..75
Figure 3.4-2 AFM images of ZnSe SAQDs as a function of the ZnSe
SAQDs growth temperature. The flow rate of hydrogen
selenium is fixed at 25 sccm………………………………..…...76
Figure 3.4-3 (a) Density, (b) diameter, and (c) height of ZnSe SAQDs
for various growth temperatures. The flow rate of hydrogen selenium is fixed at 25 sccm…………….………...…..….…..77
Figure 3.4-4 Growth parameters of ZnSe SAQDs at different ZnSe SAQDs growth temperatures. The flow rate of hydrogen
selenium is fixed at 30 sccm……………………………….……79
Figure 3.4-5 AFM images of ZnSe SAQDs as a function of the ZnSe
SAQDs growth temperature. The flow rate of hydrogen
selenium is fixed at 30 sccm……………………………………80

Figure 3.4-6 (a) Density, (b) diameter, and (c) height of ZnSe SAQDs
for various growth temperatures. The flow rate of hydrogen
selenium is fixed at 30 sccm……………………………………81
Figure 3.4-7 Growth parameters of ZnSe SAQDs at different ZnSe SAQDs growth temperatures. The flow rate of hydrogen
selenium is fixed at 40 sccm…………………………………….83
Figure 3.4-8 AFM images of ZnSe SAQDs as a function of the ZnSe
SAQDs growth temperature. The flow rate of hydrogen selenium is fixed at 40 sccm……………………………………...……….84
Figure 3.4-9 (a) Density, (b) diameter, and (c) height of ZnSe SAQDs
for various growth temperatures. The flow rate of hydrogen selenium is fixed at 40 sccm……………………………………85
Figure 3.4-10 Density of ZnSe SAQDs for various flow rates of
hydrogen selenium. The ZnSe SAQDs growth temperatures
are 140℃, 300℃, and 380℃……………………………………87
Figure 3.5-1 Growth parameters of uncapped ZnSe SAQDs to observe ripening effect…………………………….……….…………….83
Figure 3.5-2 AFM images of ZnSe SAQDs as a function of the ripening days……………………………………………….……………..89
Figure 3.5-3 (a) Density, (b) diameter, and (c) height of ZnSe SAQDs
for various ripening days………..………………………………90
Figure 3.5-4 SEM morphologies of uncapped ZnSe SAQDs…………..92
Figure 3.6-1 Growth parameters of ZnSe SAQDs capped with ZnS...…93
Figure 3.6-2 Evolution of the surface morphology of ZnSe SAQDs capped with ZnS………………………………………………...94
Figure 3.6-3 (a) Density, (b) diameter, and (c) height of ZnSe SAQDs for various cap layer growth time……………………………..……95
Figure 3.6-4 PL spectra of ZnSe SAQDs for different cap layer growth time. The ZnS cap layer growth time is (a) 50 sec, (b) 70 sec, (c) 110 sec, and (d) 130sec…………………………………....….…97
Figure 3.6-5 (a)The peak position and (b) PL intensity of emission as
a function of ZnS cap layer growth time………………...……...98

參考文獻 References
1. T. P. Pearsall, “Quantum semiconductor devices and technologies”, Kluwer Academic Publishers, Boston, 2000.
2. K. Barnham and D. Vvedensky, “Low-dimensional semiconductor structures”, Australia, 2001.
3. L. Jacak and P. Hawrylak, “Quantum dots”, Springer, Berlin, 1998.
4. M. Sugawara,“Self-assembled InGaAs/GaAs quantum dots”, Academic, San Diego, 1999.
5. O. A. Tkachenko, V. A. Tkachenko, D. G. Baksheyev, Liang, C. T. Simmons, M. Y. Smith, and D. A.Ritchie, “Coulomb Charging Effect in an Open Quantum-Dot Device”, J. phys., Condens. matter, vol. 13, pp. 9515-9534, 2001.
6. B. Bennett, R. Magno, and B. V. Shanabrook, “Molecular beam epitaxial growth of InSb, GaSb, and AlSb nanometer-scale dots on GaAs”, Appl. Phys. Lett., vol. 68, pp. 505-507, 1996.
7. R. Bhargava, “Properties of wide bandgap Ⅱ-Ⅵ Semiconductors”London, United Kingdom, 1988.
8. W. Seifert, N. Carlsson, J. Johansson, M. E. Pistol, and L. Samuelson, “In situ growth of nano-structures by metal-organic vapour phase epitaxy”, J. Cryst. Growth., vol. 170, pp. 39-46, 1997.
9. M. C. Liao, Y. H. Chang, Y. F. Chen, J. W. Hsu, J. M. Lin, and W. C. Chou, “Fabrication of ZnSe quantum dots under Volmer-Weber mode by metalorganic chemical vapor deposition”, Appl. Phys. Lett., vol. 70(17), pp. 2256-2258, 1997.
10. Y. H. Chang, M. H. Chieng, C. C. Tsai, and M. C. Liao, “Growth and photoluminescence study of ZnSe quantum dots”, J. Electron. Mater., vol. 29, pp. 173-176, 2000.
11. H. Zhu, Z. Wang, H. Wang, L. Chi, and S. Feng, “Uniformity enhancement of the self-organized InAs quantum dots”, J. Cryst. Growth., vol. 197, pp. 372-375, 1999.
12. R. M. Park and H. A. Mar, “Molecular beam epitaxial growth of high quality ZnSe on (100) Si ”, Appl. Phys. Lett., vol. 48, pp. 529-531, 1986.
13. W. Stutius, “Organometallic vapor deposition of epitaxial ZnSe films on GaAs substrates”, Appl. Phys. Lett., vol. 33, pp. 656-658, 1978.
14. S. Fujita, “Photo-assisted metalorganic vapor phase epiatxial growth of wide-gap Ⅱ-Ⅵ semiconductors”, J. Cryst. Growth., vol. 117, pp. 67-74, 1992.
15. G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, Academic Press, Inc., London, 1989.
16. W. Seifert, N. Carlsson, A. Petersson, L. E. Wernersson, and L. Samuelson, “ Alignment of InP Stranski–Krastanow dots by growth on patterned GaAs/GaInP surfaces”, Appl. Phys. Lett., vol. 68, pp. 1684-1686, 1996.
17. R. Songmuang, S. Kiravittaya, and O. G. Schmidt, “Shape evolution of InAs quantum dots during overgrowth”, J. Cryst. Growth., vol. 249, pp. 416-421, 2003.
18. H. Xu, Q. Gong, B. Xu, W. Jiang, J. Wang, W. Zhou, and Z. Wang, “Structural and optical characteristics of self-organized InAs quantum dots grown on GaAs (3 1 1) A substrates”, J. Cryst. Growth., vol. 200, pp. 70-76, 1999.
19. E. Steimetz, T. Wehnert, H. Kirmse, F. Poser, J. T. Zettler, W. Neumann, and W. Richter, “Optimizing the growth procedure for InAs quantum dot stacks by optical in situ techniques”, J. Cryst. Growth., vol. 221, pp. 592-598, 2000.
20. Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, J. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates”, Physical Review B, vol. 54(16), pp. 11528-11531, 1996.
21. M. Geiger, A. Bauknecht, F. Adler, H. Schweizer, and F. Scholz, “Observation of the 2D-3D growth mode transition in the InAs/GaAs system”, J. Cryst. Growth., vol. 170, pp. 558-562, 1997.
22. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “Characteristics of InGaN multi-quantum-well-structure laser diodes”, Appl. Phys. Lett., vol. 68, pp. 3269-3271, 1996.
23. A. Madhukar, T. R. Ramachandran, A. Konkar, I. Mukhametzhanov, W. Yu, and P. Chen, “On the atomistic and kinetic nature of strained epitaxy and formation of coherent 3D island quantum boxes”, Appl. surf. sci., vol. 123/124, pp. 266-275, 1998.
24. M. Y. Shen, S. Koyama, T. Goto, K. Arai, A. Kasuya, Y. H. Wu, and T. Yao, “The photoluminescence from ZnS/(ZnSe)1/ZnS heterostructures”, Mater. Sci. Eng. A , vol. 217/218, pp. 189-192, 1996.
25. V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, A. R. Kovsh, and N. N. Ledentsov, “1.75μm emission from self-organized InAs quantum dots on GaAs”, J. Cryst. Growth., vol. 201/202, pp. 1143-1145, 1999.
26. W. Yi-hong and A. Kenta, “Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures”, Phys. Rev. B, vol. 53, pp. R10485–R10488, 1996.
27. S. H. Xin, P. D. Wang, A. Yin, C. Kim, M. Dobrowolska, J. L. Merz, and J. K. Furdyna, ” Formation of self-assembling CdSe quantum dots on ZnSe by molecular beam epitaxy”, Appl. Phys. Lett., vol. 69, pp. 3884-3886, 1996.
28. T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, and C. J. Summers, “Photoluminescence properties of ZnS epilayers”, J. appl. physi., vol. 81, pp. 2803-2809, 1997.
29. H. Saito, K. Nishi, and S. Sugou, , “Shape transition of InAs quantum dots by growth at high temperature”, Appl. Phys. Lett., vol. 74(9), pp. 1224-1226, 1999.
30. K. I. Shiramine, T. Itoh, S. Muto, T. Kozaki, and S. Sato, “Adaton migration in Stranski-Krastanow growth of InAs quantum dots”, J. Cryst. Growth., vol. 242, pp. 332-338, 2002.
31. H. L. Wang, D. Ning, and S. L. Feng, “Temperature dependence of the optical properties of InAs/GaAs self-organized quantum dots with bimodal size distribution”, J. Cryst. Growth., vol. 209, pp. 630-636, 2000.
32. J. L. Merz, S. Lee, and J. K. Furdyna, “Self-organized growth, ripening, and optical properties of wide-bandgap II-VI quantum dots”, J. Cryst. Growth., vol. 184/185, pp. 228-236, 1998.
33. A. J. Bennett, and R. Murray, “Nucleation of ripening of seeded InAs/GaAs quantum dots”, J. Cryst. Growth., vol. 240, pp. 439-444, 2002.
34. K. Takehana, F. Pulizzi, A. Patane, M. Henini, P. C. Main, L. Eaves, D. Granados, and J.M. Garcia, “Controlling the shape of InAs self-assembled quantum dots by thin GaAa capping layers”, J. Cryst. Growth., vol. 251, pp. 155-160, 2003.
35. A. Patane, M. G. Alessi, F. Intonti, A. Polimeni, M. Capizzi, F. Martelli, M. Geddo, A. Bosacchi, and S. Franchi, “Evolution of the optical properties of InAs/GaAs quantum dots for increasing InAs coverages”, Phys. Stat. Sol., vol. 164, pp. 493-497, 1997.
36. R. M. Lin, S. C. Lee, H. H. Lin, Y. T. Dai, and Y. F. Chen, “Blueshift of photoluminescence peak in ten periods InAs quantum dots superlattice”, J. Cryst. Growth., vol. 227-228, pp. 1034-1038, 2001.
37. G. G. Tarasov, Y. I. Mazur, and Z. Y. Zhuchenko, “Carrier transfer in self-assembled coupled InAs/GaAs quantum dots”, J. appl. physi., vol. 88, pp. 7162-7170, 2000.
38. L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, and A. Bignazzi, “Thermally activated carrier transfer and luminescence line shap in self-organized InAs quanrum dots”, Appl. Phys. Lett., vol. 69, pp. 3354-3356, 1996.
39. Q. D. Zhuang, S. F. Yoon, and H. Q. Zheng, “Photoluminescence properties of self-assembled InAs quantum dots grown on InP substrates by solid source molecular beam epitaxy”, J. Vac. Sci. Technol. B, vol. 19, pp. 1475-1478, 2001.
40. P. Thilakan, Z. I. Kazi, and T. Egawa, “Growth and characterization of InAs/InGaAs quantum dots like structure on GaAs/Si substrate by AP-MOCVD”, Appl. surf. sci., vol. 191, pp. 196-204, 2002.
41. K. Arai, Z. Q. Zhu, T. Sekiguchi, T. Yasuda, F. Lu, N. Kuroda, Y. Segawa, and T. Yao, “Photoluminescence and cathodoluminescence studies of ZnSe quantum structures embedded in ZnS”, J. Cryst. Growth., vol. 184/185, pp. 254-258, 1998.
42. M. E. Pistol, N. Carlsson, C. Persson, W. Seifert, and L. Samuelson, “Observation of strain effects in semiconductor dots depending on cap layer thickness”, Appl. Phys. Lett., vol. 67, pp. 1438-1440, 1995.
43. F. Ferdos, S. Wang, Y. Wei, and A. Larsson, “Influence of a thin GaAa cap layer on structural and optical properties of InAs quantum dots”, Appl. Phys. Lett., vol. 81(7), pp. 1195-1197, 2002.
44. R. Sellin, F. Heinrichsdorff, C. Ribbat, M. Grundmann, U. W. Pohl, and D. Binberg, “Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots”, J. Cryst. Growth., vol. 221, pp. 581-585, 2000.
45. H. Saito, K. Nishi, and S. Sugou, “Influence of GaAs capping on the optical properties of InGaAs/GaAs surface quantum dots with 1.5μm emision”, Appl. Phys. Lett., vol. 73(19), pp. 2742-2744, 1998.
46. Z. Y. Zhang, B. Xu, P. Jin, X. Q. Meng, C. Li, and Z. G. Wang, “Effect of InAlAs/InGaAs cap layer on optical properties of self-assembled InAs/GaAs quantum dots”, J. Cryst. Growth., vol. 241, pp. 304-308, 2002.
47. T. Passow, K. Leonardi, H. Heinke, T. Schmidt, J. Falta, A. Stockmann, H. Selke, and D. Hommel, “Influence of capping conditions on structural properties of CdSe/ZnSe quantum dot structures”, Physica E, vol. 13, pp. 1208-1211, 2002.



電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.23.123
論文開放下載的時間是 校外不公開

Your IP address is 3.145.23.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code