Responsive image
博碩士論文 etd-0710103-175438 詳細資訊
Title page for etd-0710103-175438
論文名稱
Title
以有機金屬化學氣相沉積法在矽基板成長二氧化鈦薄膜之電性研究
Electrical Properties of TiO2 Thin Films on Si Substrate Prepared by MOCVD
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-04
繳交日期
Date of Submission
2003-07-10
關鍵字
Keywords
熱退火、有機金屬化學氣相沈積法、二氧化鈦
TiO2, thermal annealing, MOCVD
統計
Statistics
本論文已被瀏覽 5717 次,被下載 0
The thesis/dissertation has been browsed 5717 times, has been downloaded 0 times.
中文摘要
近年來,採用高介電材料取代傳統的二氧化矽做為動態記憶體中電容的介電材料似乎有增加的趨勢。而二氧化鈦由於具有高介電常數、高折射率、高化學穩定性,故適合應用在動態記憶體中電容的介電材料。
我們採用水平、低壓、冷壁式之有機金屬化學氣相沈積法來成長二氧化鈦薄膜,採用的原料為Ti(i-OC3H7)4,並以N2O與O2作為氧化氣體。成長溫度從400℃到700℃,可發現以N2O作為氧化氣體的成長速率較快。由X光繞射的結果得知二氧化鈦薄膜為多晶結構且相轉變的溫度約為650℃。而成長溫度明顯地影響二氧化鈦薄膜的電性,在經由熱退火處理後電性也有顯著的改善。我們發現以600℃並利用O2為氧化氣體成長的二氧化鈦薄膜,經由在O2中750℃的熱退火處理20分後具有最高的介電常數為119.3和最小的漏電流。此外,我們結合有機金屬化學氣相沈積法和液相沈積法來成長二氧化鈦薄膜,發現此方法可以有效地降低漏電流。

Abstract
Recently, many dielectric materials have been considered as future promising candidates for a thin dielectric in DRAM storage capacitors.
Due to its properties of high dielectric constant (ε// = 170, ε⊥ = 89), high refractive index (~2.5) and high chemical stability. TiO2 is a promising candidate for fabricating thin dielectrics in dynamic random access memory (DRAM) storage capacitors and as gate dielectrics of metal-oxide-semiconductor field effect transistor (MOSFET) without the problem of conventional SiO2 thickness scaling down in ULSI processes because of its high dielectric constant.
TiO2 thin films grown on p-type (100) Si substrate are investigated by a cold wall horizontal MOCVD system using Ti(i-OC3H7)4, N2O and O2 as precursors in the growth temperature range from 400℃ to 700℃.
The growth rate of using N2O as the oxidizer is quicker than the growth rate of using O2 as the oxidizer because N2O is the more efficient in producing free O atoms. XRD results indicate that the structures of TiO2 films are polycrystalline and the phase transformation temperature of TiO2 films from the anatase phase to the rutile phase is about 650℃. Electrical properties are strongly influenced by the growth temperature. The electrical properties of as-grown TiO2 films can be improved by annealing treatment. The TiO2 films using O2 as the oxidizer at the growth temperature of 600℃ has the highest dielectric constant of 119.3 and the lowest leakage current density of 1.43×10-6 A/cm2 at the applied electric field of 1 MV/cm after annealing for 20 minutes in O2. In order to obtain the better electrical properties of TiO2 films on Si substrate, we prepared TiO2 films by combination of MOCVD and LPD. The dielectric constant of post-annealed TiO2 films prepared by combination of MOCVD and LPD is 34.1. And the leakage current density of it is 3.7×10-6 A/cm2 at the applied electric field of 1 MV/cm. It is lower than the films prepared in the same MOCVD-TiO2 growth condition (about 8.2×10-6 A/cm2). It suggests that this growth method can reduce the leakage current density.

目次 Table of Contents
CONTENTS

ACKNOWLEDGMENT I
LIST OF FIGURES VII
LIST OF TABLES XI
ABSTRACT XII

1.Introduction 1
1-1 Developments in DRAM 1
1-2 Properties of TiO2 2
1-3 Comparison of deposition methods of TiO2 3
1-4 Advantages of MOCVD 5

2.Experiments 6
2-1 CVD theorem 6
2-2 Growth system of MOCVD 7
2-3 Properties of metalorganic precursors 8
2-3-1 Ti metalorganic precursor 8
2-3-2 N2O and O2 decomposed 8
2-4 Growth procedures 9
2-4-1 Si wafer cleaning procedures 9
2-4-2 Aluminum metal wafer cleaning processes 10
2-4-3 Preparations of TiO2 films 11
2-5 Characterization 11
2-5-1 Physical properties 12
2-5-2 Chemical properties 12
2-5-3 Electrical properties 12

3.Results and Discussion 15
3-1 Dependence of properties on growth temperature 15
3-1.1 Thickness and growth rate as a function of growth temperature 15
3-1.2 XRD patterns as a function of growth temperature 17
3-1.3 SEM morphologies as a function of growth temperature 18
3-1.4 Raman spectra as a function of growth temperature 19
3-1.5 ESCA compositions analyses of TiO2 films 20
3-1.6 Dependence electrical properties of TiO2 films on growth temperature 23
3-1.6.1 C-V characteristics and dielectric constant of TiO2 films as a function of growth temperature 23
3-1.6.2 Leakage current density as a function of growth temperature 25
3-1.7 Improvement in electrical properties of as-grown TiO2 films by annealing treatment 25
3-2 TiO2 films grown on Si substrate prepared by combination of MOCVD and LPD 28
3-2.1 TiO2 films grown on Si substrate by combination of MOCVD and LPD 29
3-2.2 XRD patterns of TiO2 films prepared by combination of MOCVD and LPD 29
3-2.2 Electrical properties of TiO2 films prepared by combination of MOCVD and LPD 30
4.Conclusions 32

REFERENCES 34
LIST OF FIGURES

Figure 1 Crystal structures of TiO2
(a) Rutile, (b) Anatase, and (c) Brookite 41
Figure 2 Steps involved in a CVD process 42
Figure 3 Schematic growth system of MOCVD 43
Figure 4 Vapor pressure curve of Ti(i-OC3H7)4 44
Figure 5 Thickness and growth rate of TiO2 thin films on Si substrate as a function of growth temperature 45
Figure 6 Natural logarithm of the growth rate as a function of growth temperature 46
Figure 7 XRD patterns of TiO2 films using N2O as the oxidizer as a function of growth temperature 47
Figure 8 XRD patterns of TiO2 films using O2 as the oxidizer as a function of growth temperature 48
Figure 9 SEM cross-sectional views of TiO2 films 49
Figure 10 SEM surface morphologies of TiO2 films using N2O as the oxidizer as a function of growth temperature 50
Figure 11 SEM surface morphologies of TiO2 films using O2 as the oxidizer as a function of growth temperature 51
Figure 12 Raman spectra of TiO2 films using N2O as the oxidizer as a function of growth temperature (a) 400℃, (b) 450℃, (c) 500℃, (d) 550℃, (e) 600℃, (f) 650℃, and (g) 700℃ 52


Figure 13 Raman spectra of TiO2 films using N2O as the oxidizer as a function of growth temperature (a) 400℃, (b) 450℃, (c) 500℃, (d) 550℃, (e) 600℃, (f) 650℃, and (g) 700℃ 53
Figure 14 ESCA spectra of TiO2 films grown at 400℃
(a) Using N2O as the oxidizer and (b) Using N2O as the oxidizer 54
Figure 15 ESCA spectra of TiO2 films grown at 500℃
(a) Using N2O as the oxidizer and (b) Using N2O as the oxidizer 55
Figure 16 ESCA spectra of TiO2 films grown at 500℃
(a) Using N2O as the oxidizer and (b) Using N2O as the oxidizer 56
Figure 17 Ti 2p and O 1s core level spectra of TiO2 films using N2O as the oxidizer at 400℃, 500℃, and 700℃ 57
Figure 18 Ti 2p and O 1s core level spectra of TiO2 films using O2 as the oxidizer at 400℃, 500℃, and 700℃ 58
Figure 19 C-V curves of TiO2 films using N2O as the oxidizer (a) 400℃ and (b) 450℃ 59
Figure 19 C-V curves of TiO2 films using N2O as the oxidizer (c) 500℃ and (d) 550℃ 60
Figure 19 C-V curves of TiO2 films using N2O as the oxidizer (e) 600℃ and (f) 650℃ 61
Figure 19 C-V curves of TiO2 films using N2O as the oxidizer
and (g) 700℃ 62
Figure 20 C-V curves of TiO2 films using O2 as the oxidizer (a) 400℃ and (b) 450℃ 63
Figure 20 C-V curves of TiO2 films using O2 as the oxidizer (c) 500℃ and (d) 550℃ 64
Figure 20 C-V curves of TiO2 films using O2 as the oxidizer (e) 600℃ and (f) 650℃ 65
Figure 20 C-V curves of TiO2 films using O2 as the oxidizer
(g) 700℃ 66
Figure 21 Dielectric constant as a function of growth temperature 67
Figure 22 Leakage current density of TiO2 films as a function of growth temperature and electric field (a) Using N2O as the oxidizer and (b) Using O2 as the oxidizer 68
Figure 23 Leakage current density of TiO2 films as a function of growth temperature at the applied electric field of 1MV/cm 69
Figure 24 C-V curves of as-grown and post-annealed TiO2 films
(a) Using N2O as the oxidizer and at the growth temperature 400℃ 70
(b) Using N2O as the oxidizer and at the growth temperature 500℃ 71
(c) Using N2O as the oxidizer and at the growth temperature 600℃ 72
(d) Using N2O as the oxidizer and at the growth temperature 700℃ 73
Figure 25 C-V curves of as-grown and post-annealed TiO2 films
(a) Using O2 as the oxidizer and at the growth temperature 400℃ 74
(b) Using O2 as the oxidizer and at the growth temperature 500℃ 75
(c) Using O2 as the oxidizer and at the growth temperature 600℃ 76
(e) Using O2 as the oxidizer and at the growth temperature 700℃ 77
Figure 26 Comparison of dielectric constant between as-grown and post-annealed TiO2 films (a) Using N2O as the oxidizer and (b) Using O2 as the oxidizer 78
Figure 27 Leakage current density of as-grown and post-annealed TiO2 films at the applied electric field of 1 MV/cm (a) Using N2O as the oxidizer and (b) Using O2 as the oxidizer 79
Figure 28 Flowchart of combining MOCVD with LPD 80
Figure 29 SEM surface morphology and cross-section structure of LPD-TiO2 films (a) Surface morphology
and (b) Cross-section structure 81
Figure 30 SEM surface morphology and cross-section structure of TiO2 films prepared by combination of MOCVD and LPD
(a) Surface morphology, (b) Cross-section structure and
(c) Cross-section structure at high magnification 82
Figure 31 SEM surface morphology and cross-section structure of TiO2 MOCVD-TiO2 films (a) Surface morphology
and (b) Cross-section structure 83
Figure 32 XRD patterns of the as-grown and post-annealed TiO2 films prepared by combination of MOCVD and LPD (a) As-grown and (b) Post-annealed 84
Figure 33 C-V curves of the as-grown and post-annealed TiO2 films prepared by combination of MOCVD and LPD (a) As-grown and (b) Post-annealed 85
Figure 34 Leakage current density of as-grown and post-annealed TiO2 films prepared by combination of MOCVD and LPD as a function of electric field (a) As-grown and (b) Post-annealed 86


LIST OF TABLES

Table 1 Comparison of crystal structures of TiO2 87
Table 2 Bond energies of various gaseous molecules with N and O 88
Table 3 JCPDS diffraction card of TiO2 89

參考文獻 References
REFERENCES

[1] K. Kim, C. G. Hwang, and J. G. Lee, “DRAM technology perspective for Gigabit era,” IEEE Trans. Electron Devices, vol. 45, pp. 598-608, 1998.
[2] Yujun Li, Jai-Hoon Sim, Jack Mandelman, Kevin McStay, Qiuyi Ye, and Gary Bronner, “Array transistor design challenges in trench capacitor DRAM technology,” VLSI Technology, Systems and Applications, pp. 85-88, 2001.
[3] Q. X. Jia, L. H. Chang, and W. A. Anderson, “Low leakage current BaTiO3 thin film capacitors using a multilayer construction,” Thin Solid Films, vol. 259, pp. 264-269, 1995.
[4] S. Yamamichi, A. Yamamichi, D. park, T. J. King, and C. Hu, “Impact of time dependent dielectric breakdown and stress-induced leakage current on the reliability of high dielectric constant (Ba, Sr)TiO3 thin-film capacitors for Gbit-scale DRAM’s,” IEEE Trans. Electron Devices, vol. 46, no. 2, pp. 342-347, 1999.
[5] K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics,” IEEE Circuits & Devices, vol. 13, pp. 27-34, 1997.
[6] S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama and A. Ishitani, “Ultrathin tantalum oxide capacitor dielectric layers fabricated using rapid thermal nitridation prior to low-pressure chemical-vapor-deposition,” J. Electrochem. Soc., vol. 140, pp. 1617-1625, 1993.
[7] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[8] Y. Abe and T. Fukuda, “TiO2 thin films formed by electron cyclotron resonance plasma oxidation at high temperature and their application to capacitor dielectrics,” Jpn. J. Appl. Phys. Part 2-Letts, vol. 33, pp. L1248-L1250, 1994.
[9] T. W. Kim, Y. S. Toon, S. S. Yom, and C. O. Kim, “Ferroelectric BaTiO3 films with a high magnitude dielectric constant grown on p-Si by low-pressure metalorganic chemical vapor deposition,” Appl. Surface. Science, vol. 90, pp. 75-80, 1995.


[10] K. Koyama, T. Sakuma, S. Yamamichi, Watanabe, and H. Aoki, “A stacked capacitor with (BaxSr1-x)TiO3 for 256M DRAM,” IEDM Tech. Dig., pp. 823-826, 1991.
[11] E. Tokumitsu, Ryo-ichi Nakamura, and H. Ishiwara, “Nonvolatile memory operations of metal-ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Lett., vol. 18, no. 4, pp. 160-162, 1997.
[12] The Oxide Handbook, ed. G. V. Samsonov ( IFI/Plenum, New York, p. 316, 1973.
[13] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (ttip) and ttip/H2O ambients”, J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[14] M. A. Butler and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[15] T. Carlson and G. L. Griffin, “Photooxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem. , vol. 90, pp.5896-5900, 1986.
[16] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-films with graded refractive-index profiles,” Journal of the JapanInstitute of Metals, vol. 62, pp. 1069-1074, 1998.
[17] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[18] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[19] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chemical Communications, pp. 569-570, 2001.
[20] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Films, vol. 323, pp. 59-62, 1998.

[21] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[22] S. D. Mo and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase, and brookite,” Physical Review B-Condensed Matter, vol. 51, pp. 13023-13032, 1995.
[23] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595–600, 2001.
[24] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, pp. 735-758, 1995.
[25] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Physi., vol. 75, Iss 4, pp. 2042-2047, 1994.
[26] N. Daude, C. Goutm, and C. Jouanin, Phys. Rev. B 15, pp.3229, 1977
[27] G. S. Brady and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[28] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” Joural of Electroanalytical Chemistry, vol. 428, pp. 25-32, 1997.
[29] Masaru Kadoshima, Masahiko Hiratani, Yasuhiro Shimamoto, Kazuyoshi Torii, Hiroshi Miki, Shinichiro Kimura, and Toshihide Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, vol. 424, pp.224-228, 2003.
[30] National Institute of Standards and Technology, Phase Equilibrium
Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[31] J. M. Criado and C. Real, J. Soria, Solid State Ionics, vol. 32/33, p.461, 1989.
[32] R.D. Shannon and J.A. Pask, J. Am. Ceram. Soc. vol. 48, p. 391, 1965.


[33] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[34] O. Harizanov and A. Harizanova, “Development and investigation of sol–gel solutions for the formation of TiO2 coatings,” Solar Energy Materials and Solar Cells, vol. 63, pp. 185-195, 2000.
[35] R. A. Zoppi , B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization,” J. Electroanalytical Chemistry, vol. 544, pp.47-57, 2003.
[36] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001.
[37] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sensors and Actuators B-Chemical, vol. 68, pp. 189-196, 2000.
[38] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Applied Optics-OT, vol. 37, pp.5284-5290, 1998.
[39] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, vol. 371, pp.218-224, 2000.
[40] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surface & Coatings Technology, vol. 151, pp. 51-54, 2002.
[41] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp.93-99,2002
[42] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[43] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[44] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[45] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide films obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[46] S. S. Huang and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma-enhancedchemical-vapor-deposition,” J. Mater. Sci. -Materials in Electronics, vol. 13, pp. 77-81, 2002.
[47] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,”Thin Solid Films, vol. 401, pp. 88-93, 2001.
[48] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-films by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[49] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[50] C. K. Ong and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[51] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka, and T. Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice deformation,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 7358-7359, 1997.
[52] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 4689-4690, 2002.
[53] M. K. Lee and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys. Part 2-Letters, vol. 39, pp. L101-L103, 2000.

[54] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol. 371, pp. 148-152, 2000.
[55] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[56] S. C. Sun and T. F. Chen, “Effects of electrode materials and annealing ambients on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 1346-1350, 1997.
[57] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002.
[58] M. K. Lee, Y. M. Hung, and J. J. Huang, “Properties of TiO2 thin-films on InP substrate prepared by MOCVD,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 6543-6546, 2001.
[59] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp. 766-771, 2000.
[60] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[61] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee, and H. J. Jung, “Metalorganic chemical-vapor-deposition of TiO2-N anatase thin-film on Si substrate”, Appl. Phys. Lett. , vol. 66, pp. 815-821, 1995.
[62] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films”, Thin Solid Films, vol. 198, pp. 199-205, 1991.

[63] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates”, Appl. Phys. Lett. , vol. 69, pp 3860-3862, 1996.
[64] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics”, IEEE Tran. Electron Devices, vol. 44, pp. 104-109, 1997.
[65] G. Stringfellow, “Organometallic vapor phase epitaxy: Theory and Practice, Academic Press, Boston, 1989.
[66] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technology, p. 512, 2000
[67] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin films on Si grown by metalorganic chemical vapor deposition,” in J. Appl. Phys., vol. 73, no. 3, pp. 1547-1549, 1993.
[68] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 661-666, 1997.
[69] A.C. Jones, T.J Leedham, P.J Wright et al., “Synthesis and characterization of two novel titanium isopropoxides stabilized with a chelating alkoxide: their use in the liquid injection MOCVD of titanium dioxide thin films,” J. Mater. Chem., vol.8, pp.1773-1777, 1998.
[70]“Powder Diffraction File,” Joint committee on powder diffraction standards.
[71] W. Ma, Z. Lu and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A, vol. 66, pp. 621-627, 1998.
[72] S. M. SZE, Physics of Semiconductor Devices, p.390
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.13.113
論文開放下載的時間是 校外不公開

Your IP address is 18.116.13.113
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code