Responsive image
博碩士論文 etd-0710104-220316 詳細資訊
Title page for etd-0710104-220316
論文名稱
Title
高速相位可調式直接數位式頻率合成器與低功率SRAM設計
A High Speed Phase Adjustable ROM-less DDFS and Low-Power SRAM Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-16
繳交日期
Date of Submission
2004-07-10
關鍵字
Keywords
靜態隨機存取記憶體、低功率、直接數位式頻率合成器
Low Power, SRAM, DDFS
統計
Statistics
本論文已被瀏覽 5639 次,被下載 5146
The thesis/dissertation has been browsed 5639 times, has been downloaded 5146 times.
中文摘要
本論文包含兩個主題,第一個主題是高速相位可調式直接數位式頻率合成器;第二個主題是低功率之靜態隨機存取記憶體設計。
直接數位式頻率合成器使用四倍角公式,不使用任何縮放表(Scaling Table)和錯誤更正表(Error Correction Table),並且加入相位和頻率之可調性,配合通訊系統之實際需求的同時,產生IQ Channel所需之頻率,並加入管線式設計以提昇所輸出之頻率。
低功率之靜態隨機存取記憶體主要使用負字元線 (Word-line)電壓來降低漏電流,來達到低功率效果。因為漏電流會隨著記憶體的容量變大而升高,使得存取產生錯誤,所以使用負字元線來降低漏電流不僅可以達到低功率,而且可以讓讀寫記憶體不會產生存取錯誤。
Abstract
This thesis includes two topics. The first topic is a high speed phase adjustable ROM-less DDFS (Direct Digital Frequency Synthesizer). The second one is a low-power SRAM design.
The high speed phase adjustable ROM-less DDFS employs trigonometric quadruple angle formula with the adjustability of phase and frequency. Neither any scaling tables nor error correction tables are required. In order to meet demands of general communication systems, the ROM-less DDFS is aimed at generating the frequencies for IQ channels. A pipelining design is adopted in our design to boost the frequency of the DDFS.
The low-power SRAM uses a negative word-line scheme to reduce the leakage current of word-line controlled transistors (WCT). The leakage current increases with the high density of SRAM which might cause reading and writing errors. The negative word-line scheme not only reduces the leakage current as well as the power, but also makes the SRAM operate reliably during read and write cycles.
目次 Table of Contents
摘要 i
Abstract ii
第一章 簡介 1
1.1 前言 1
1.2 相關先前DDFS文獻探討 1
1.3 相關先前低功率SRAM文獻探討 2
1.4 論文目的 4
1.5 論文大綱 5
第二章 高速相位可調式直接數位式頻率合成器 6
2.1 頻率合成器簡介 6
2.2 高速相位可調式直接數位式頻率合成器原理介紹 7
2.2.1 三角函數之一階四倍角近似值法 7
2.2.2 誤差函數近似法 9
2.2.3 三角函數之二階四倍角近似法 10
2.3 直接數位式頻率合成器之實作 10
2.3.1 平方器和乘法器 10
2.3.2 直接數位式頻率合成器架構 11
2.3.3 直接數位式頻率合成器之頻率控制 14
2.3.4 直接數位式頻率合成器之相位位移控制 14
2.4 直接數位式頻率合成器之模擬結果 14
2.4.1 閘級模擬結果 14
2.4.2 TimeMill模擬結果 15
2.4.3 晶片實測結果 17
2.4.4 測試結果結論與討論 20
第三章 低功率SRAM設計 21
3.1 SRAM之功率消耗 21
3.2 架構簡介 22
3.3 記憶體單元漏電流分析 23
3.3.1 負字元線電壓 25
3.3.2 負基座電壓 27
3.3.3 效能比較 29
3.4 位元線的預充電和預放電探討 30
3.4.1 6T記憶體單元 31
3.4.2 4T記憶體單元 33
3.5 SRAM的讀寫 34
3.6 其他電路模組 35
3.6.1 感測放大器 35
3.6.2 自我測試電路 36
3.6.3 記憶體時序控制電路 37
3.6.4 記憶體詳細電路 38
3.7 模擬結果 40
3.8 預計操作規格 43
3.8.1 與其他架構比較 38
3.9 測試考量和晶片佈局 44

第四章 總結與相關成果 46
參考文獻 47
參考文獻 References
[1] G. W. Kent, and N.–H. Sheng, “A high purity, high speed direct digital synthesizer,” in Proc. 49th IEEE Inter. Frequency Control Symp., pp. 207-211, 1995.
[2] H. Osborne, “A generalized polarity-type Costas loop for tracking MPSK signals,” IEEE Trans. on Communications, vol. 30, no. 10, pp. 2289-2296, Oct. 1982.
[3] F. M. Gardner, Phaselock Techniques. New York: Wiley Intersciences, 1979.
[4] J. Vankka, “Methods of mapping from phase to sine amplitude in direct digital synthesis,” in Proc. 1996 IEEE Int. Frequency Control Symp., pp. 942-950, June 1996.
[5] E. De Caro, E. Napoli, and Strollo A.M.G, “ROM-less direct digital frequency synthesizers exploiting polynomial approximation,” in Proc. 9th International Conference on Electronics, Circuits and Systems, vol. 2, pp. 481-484, Sept. 2002.
[6] A. M. Sodagar, and G. R. Lahihi, “A novel architecture for ROM-less sin-output direct digital frequency synthesizers by using the 2nd-order parabolic approximation,” in Proc. IEEE/EIA Int. Frequency Control Symp. and Exhibition, pp. 284-289, June 2000.
[7] K. Itoh, K. Sasaki, and Y. Nakagome, “Trends in low-power RAM circuit technologies,” Proc. IEEE, vol. 83, no. 4, pp. 524-534, Apr. 1995.
[8] A. Roberts, J. Dreibelbis, G. Gabric, L. Gilbert, R. Goodwin, E. Hedberg, T. Maffitt, L. Meuniar, D. Moran, N.-Y. Phuong, D. Reed, D. Reismiller, and R. Sasaki, “A 256K SRAM with on-chip power supply conversion,” in Proc. IEEE International Solid-State Circuits Conference, pp. 252-253, Feb. 1987.
[9] H. Kawaguchi, Y. Itoh, and T. Sakurai, “Dynamic leakage cut-off scheme for low-voltage SRAM’s,” in Proc. Symp. On VLSI Circuits, pp. 140-141, June 1998.
[10] H. Tanaka, M. Aoki, T. Sakata, S. Kimura, N. Sakashita, H. Hidaka, T. Tachibana, and K. Kimura, “A precise on-chip voltage generator for a gigascale DRAM with a negative word-line scheme," IEEE J. Solid-State Circuits, vol. 34 , no. 8 , pp. 1084-1090, Aug. 1999.
[11] C.-C. Wang, P.-M. Lee, and K.-L. Chen, “6-T SRAM using dual threshold voltage transistors and low-power quenchers,” in Proc. 9th IEEE International Conference on Electronics, Circuits and Systems, vol. 2, pp. 827-830, Sep. 2002 .
[12] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi, S. Nagao, S. Kayano, and T. Nakano, “A divided word-line structure in the static RAM and its application to a 64K full CMOS RAM,” IEEE J. Solid-State Circuits, vol. 18, no. 5, pp. 479-485, Oct. 1983.
[13] T. Hirose, H. Kuriyama, S. Murakami, K. Yuzuriha, T. Mukai, K. Tsutsumi, Y. Nishimura, Y. Kohno, and K. Anami, “A 20-ns 4-Mb CMOS SRAM with hierarchical word decoding architecture,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1068-1074, Oct. 1990.
[14] P. K. Lala, and A. Walker, “An on-chip test scheme for SRAMs,” International Workshop on Memory Technology, Design and Testing, pp. 16-20, Aug. 1994.
[15] C.-C. Wang, H.-C. She, and R. Hu, “A ROM-less direct digital frequency synthesizer by using trigonometric quadruple angle formula,” in Proc. 9th International Conference on Electronics, Circuits and Systems, vol. 1, pp. 65-68, Sep. 2002.
[16] O. Minato, T. Masuhara, T. Sasaki, K. Matsumoto, Y. Sakai, and T. Hayashida, “A 20 ns 64K CMOS static RAM,” IEEE J. Solid-State Circuits, vol. 19, no. 6, pp. 1008-1013, Dec. 1984.
[17] E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE J. Solid-State Circuits, vol. 22, no. 5, pp. 748-754, Oct. 1987.
[18] C.-C. Wang, H.-Y. Leo, and Ron Hu, “A 4Kb 500-MHz 4-T CMOS SRAM using low-VTHN bitline drivers and high-VTHP latches,” in Proc. IEEE ASIA-Pacific Conference on ASIC, pp.49-52, Aug. 2002.
[19] S. Hattori, and T. Sakurai, “90% write power saving SRAM using sense-amplifier memory cell,” in Proc. Symp. on VLSI Circuits, pp. 46-47, June 2002.
[20] D.-H. Wang, Q. Jing, Y.-G. Li, and C.-H. Hou, “Low power design in 100 MHz embedded SRAM,” in Proc. 4th International Conference on ASIC, pp. 599-602, Oct. 2001.
[21] C.-C. Wang, Y.-L. Tseng, W.-J. Lin, and R. Hu, “A phase-adjustable ROM-less direct digital frequency synthesizer with 41.66 MHz output frequency,” in Proc. 14th Symp. on VLSI Design/CAD, pp. 50, P3-8, Aug. 2003.
[22] C.-C. Wang, T.-H. Chen, and R. Hu, “A 4-Kb 667MHz CMOS SRAM using dynamic threshold voltage wordline transistor,” in Proc. Southwest Symp. on Mixed-Signal Design, pp. 90-93, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code