Responsive image
博碩士論文 etd-0710104-232604 詳細資訊
Title page for etd-0710104-232604
論文名稱
Title
植入式生物神經微電刺激晶片之類比前端電路
Analog Frontend of an Implantable Biological Nerve Micro-stimulation Chip
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-16
繳交日期
Date of Submission
2004-07-10
關鍵字
Keywords
微電刺激
Micro-stimulation
統計
Statistics
本論文已被瀏覽 5704 次,被下載 10504
The thesis/dissertation has been browsed 5704 times, has been downloaded 10504 times.
中文摘要
本論文提出一個以配合基頻系統單晶片(SOC),可植入人體的神經微電刺激介面之類比前端電路。前述的神經介面包括可控制的刺激器及用作傳送資料和電能的遙測裝置,經由體外的傳送線圏來通訊和提供電源,以穿透皮膚的耦合電磁轉換成電能之方式驅動,能夠避免受感染的風險與電池有限壽命的問題。

本論文之類比前端電路設計中第一個主題提出以一個單級的差動放大器作為LDO (Low Dropout)穩壓器的誤差放大器,提高工作頻寬和減少晶片的面積。其配合一個不隨外部環境變化的能隙參考電壓源和透過電阻分壓的迴授後,可以在輸出提供一個穩定的電壓,作為晶片內部其他電路的工作電源。

第二個主題提出以無需使用大電容的ASK (Amplitude Shift Keying)解調器,應用在植入式微電刺激系統整合單晶片中,使得晶片佈局所需要面積大幅降低,並且不損及其效能。
Abstract
An analog frontend of an implantable baseband SOC (System-on-a-chip) chip design for the interface of neural micro-stimulation is present in this thesis. The mentioned neural interface including controllable stimulators, and telemetry for data and power transmission which is powered by transcutaneous magnetic coupling. An external transmitter coil is required to power and communicate with the implanted device. It can avoid the risk of causing infection and the problem of limited battery life.

The first topic of this thesis proposes a single stage differential amplifier to be used as an Error Amplifier in an LDO (Low Dropout) regulator. It increases the bandwidth and decreases the chip’s area at the same time. When a bandgap bias is integrated with our design in a feedback loop, a stable voltage source is constituted to become a power supply for the entire implanted chip.

The second topic reveals a C-less (no capacitor) area-saving ASK (Amplitude Shift keying) demodulator. Since there is no capacitor used in the demodulator, it can substantially reduce the layout area of the SOC without any sacrifice of the performance of the SOC
目次 Table of Contents
摘要 i
Abstract ii
第一章 緒論 1
1.1 前言 1
1.2 論文所研究系統之說明 3
1.2.1 植入式微電刺激系統架構說明 4
1.2.2 系統之電能轉換電路說明 5
1.3 先前文獻探討 8
1.3.1 相關穩壓器架構 8
1.3.2 相關ASK解調器架構 10
1.4 論文大綱 14
第二章 植入式晶片之寬頻線性穩壓器 15
2.1 簡介 15
2.2 線性穩壓器工作原理 15
2.3 電路設計 19
2.3.1 本設計之線性穩壓器電路說明 19
2.3.2 頻率補償考量 28
2.3.3 佈局前模擬結果 31
2.4 晶片量測 35
2.4.1 量測方法與量測儀器 35
2.4.2 預計規格與量測規格 35
2.4.3 量測波形圖與晶片照相圖 36
2.5 量測後討論與電路改進 37
第三章 植入式晶片之中頻帶無電容ASK解調器 39
3.1 簡介 39
3.2 電路設計  40
3.2.1 本設計之ASK解調器電路架構說明 40
3.2.2 電路工作原理說明 44
3.3 晶片量測 48
3.3.1 量測方法與量測儀器 48
3.3.2 預計規格與量測規格 49
3.3.3 量測波形圖與晶片照相圖 50
3.4 量測後討論與電路改進 52
第四章 結論與相關成果 53

參考文獻 54
參考文獻 References
[1] F. T. Hambrecht, and J. B. Reswick, Functional Electrical Stimulation: Applications in Neural Prostheses. New York : Dekker, 1977.
[2] S. A. Binder-Macleod, and S. C. K. Lee, “An assessment of the efficacy of functional electrical stimulation in the treatment of hemiplegia,” Top. Stroke Rehabil, vol. 3, pp. 88-98, Apr. 1997.
[3] A. Prochazka, M. Gauthier, M. Wieler, and Z. Kenwell, “The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia,” Arch. Phys. Med. Rehabil., vol. 78, pp. 608-614, June 1997.
[4] D. B. Popovic, M. B. Popovic, and T. Sinkjær, “Neurorehabilitation of upper extremities in humans with sensory-motor impairment,” J. of Neuromodulation, vol. 5, pp. 54-67, Jan. 2002.
[5] R. Kamnik, T. Bajd, and A. Krajl, “Functional electrical stimulation and arm supported sit-to-stand transfer after paraplegia: a study of kinetic parameters,” Artificial Organs, vol. 23, pp. 413-417, May 1999.
[6] R. Davis, T. Houdayer, B. Andrews, and A. Barriskill, “Paraplegia: prolonged standing using closed-loop functional electrical stimulation and andrews ankle-foot orthosis,” Artificial Organs, vol. 23, pp. 418-420, May 1999.
[7] 陳清芳(2000年,4月),神經義肢---癱瘓手部動起來,中央通訊社,台北市,中華民國。可連接以讀取資料之網址︰http://news.yam.com/healthy/200004/13/13785400.html
[8] S. J. Tange, and K. D. Wise, “A 16-channel CMOS neural
stimulating array,” IEEE J. of Solid-State Circuits, vol. 27, no. 12,
pp. 1819-1825, Dec. 1992.
[9] G. Kovacs, C. Storment, M. Halk-Miller, C. Belcznski, E. Lewis, and N. Maluf, “Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranical nerves,” IEEE Trans. on Biomedical Engineering, vol. 41, no. 6, pp. 567-577, June 1994.
[10] G. E. Leob, F. J. R. Richmond, W. H. Moore, and R. A. Peck, “Design and fabrication of hermetic microelectronic implants,” in Proc. IEEE-EMBS Special Topic Conference on Microtechnoloies in Medicine & Biology, pp. 455-459, 2000.
[11] G. E. Loeb, F. J. R. Richmond, S. Olney, T. Cameron, A. C. Dupint, K. Hood, R. A. Peck, P. R. Troyk, and J. H. Schulman, “Bionic neurons for functional and therapeutic electrical stimulation,”in Proc. IEEE 20th Int. Cont. Eng. Medicine and Biology Society, vol. 5, pp. 2305-2309, 1998.
[12] B. S. Fu, Design of Bi-directional Wireless Communication for
Implantable Biomicrosystem. Ms. D. Thesis, Institute of Biomedical Engineering of National Cheng Kung University in Taiwan, 2003.
[13] S. Dhar, and D. Maksimović, “Switching regulator with dynamically adjustable supply voltage for low power VLSI,” in Proc. IECON’01, vol. 3, pp. 1874-1880, Dec. 2001.
[14] S. K. Reynolds, “A DC-DC converter for short-channel CMOS technologies,” IEEE J. of Solid-State of Circuits, vol. 32, no. 1, pp. 111-113, Jan. 1997.
[15] S. K. Lau, K. N. Leung, and P. K. T. Mok, “Analysis of low-dropout regulator topologies for low-voltage regulation,” in Proc. IEEE Conference on Electron Devices and Solid-State Circuits, vol. 3, pp. 379-382, no. 12, Dec. 2003.
[16] G. Bontempo, T. Signorelli, and F. Pulvirenti, “Low supply voltage, low quiescent current, ULDO linear regulator,” in Proc. IEEE International Conference on Electronics, Circuits and Systems, vol. 1, pp. 409-412, no. 9, Sep. 2001
[17] S. Yuan and B. C. Kim, “Low dropout voltage regulator for wireless applications,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 421-424, no. 7, June 2002.
[18] T. J. Barber, S. Ho, and P. Ferguson, “Multi-mode CMOS low dropout voltage regulator for GSM handsets,” VLSI Circuits Digest of Technical Papers, pp. 284-287, Jun. 2002.
[19] 何滿龍、孔繁喜、謝志遠,數位類比通訊實習。臺中市︰滄海書局,2002年。
[20] M. Barú, H. Valdenegro, C. Rossi, and F. Silveira, “An ASK demodulator in CMOS technology,” in Proc. IV Iberchip Workshop, Mar del Plata, Argentina, 1998, pp. 37-42.
[21] W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, D. Hughes, E. McGucken, M. S. Humayun, E. De Juan, J. D. Weiland, and R. Greenberg. “A neuro-stimulus chip with telemetry unit for retinal prosthetic device,” IEEE J. of Solid State Circuits, vol. 35, no. 10, pp. 1287-1497, Oct. 2000.
[22] R. Harjani, O. Birkenes, and J. Kim, “An IF stage design for an ASK-based wireless telemetry system,” in Proc. IEEE. International Symposium on Circuits and Systems (ISCAS), vol. 1, pp. 52-55, 2000.
[23] H. Yu and K. Najafi, “Circuitry for a wireless microsystem for neural recording microprobes,” in Proc. IEEE-EMBC, vol. 1, pp. 761-764, 2001.
[24] T. Yazaki, H. Yamamoto, A. Hyogo, and K. Sekine, “Low-power ASK receiver circuit for wireless communication system,” in Proc. APCCAS, vol. 2, pp. 405-408, Oct. 2002.
[25] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation. New York: John Wiley and Sons, 1997.
[26] K. N. Leung, and P. K. T. Mok, “Analysis of multistage amplifier- frequency compensation,” IEEE Trans. Circuits Syst. I, vol. 48, no. 9, pp. 1041–1056, Sep. 2001.
[27] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[28] D. A Pucknell and K. Eshraghian, Basic VLSI Design. Sydney: Prentice Hall,1988.
[29] C.-C. Wang, Y.-H. Hsueh, U F. Chio, and Y.-T. Hsiao, “A C-less ASK demodulator for implantable neural interfacing chips,” to be presented at ISCAS, Vancouver, Canada, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code