Responsive image
博碩士論文 etd-0710106-093825 詳細資訊
Title page for etd-0710106-093825
論文名稱
Title
氣相沉積奈米碳管與成長催化劑之晶向關係
Crystallographic Orientation Relationships between CVD-grown Carbon Nanotubes and Growth Catalysts
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-27
繳交日期
Date of Submission
2006-07-10
關鍵字
Keywords
<111>、<100>、<110>、鐵、雪明碳鐵、奈米碳管
<100>, <111>, <110>, iron, cementite, carbon nanotube
統計
Statistics
本論文已被瀏覽 5679 次,被下載 3692
The thesis/dissertation has been browsed 5679 times, has been downloaded 3692 times.
中文摘要
樣品的來源來自義守大學材料科學與工程學系鄭慧如老師實驗室,首先以溶膠凝膠法(Sol-Gel)製造含鐵觸媒氧化矽凝膠觸媒,並以化學氣相沉積法製作奈米碳管。而透過各種儀器,如X-Ray 繞射儀 (XRD)、掃描式電子顯微鏡 (SEM)以及穿透式電子顯微鏡 (TEM)進行分析,研究的重點方向在於觀察碳管與催化劑之晶相關係。實驗利用穿透式電子顯微鏡來做碳管與催化劑的繞射圖分析,透過繞射圖結果,決定催化劑是何種化合物以及晶相關係。

經過繞射圖的確認及比對,出現在碳管內部的化合物有三種,包括Fe3C、
Abstract
Samples are from I-Shou university Department of Materials Science and Engineering, Dr. Huy-Zu Cheng’s laboratory, First, using sol-gel method to produce silicon dioxide (SiO2) with iron catalysts, and with chemical vapor deposition (CVD) to produce carbon nanotubes. To operate these instruments, for example X-Ray diffractometry (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to analyze. The research point is judging the crystallographic orientation relationships between carbon nanotube and catalysts. Using transmission electron microscopy (TEM) to do diffraction patterns with carbon nanotubes and catalysts. From diffraction patterns results, we can decide what catalysts is? And it’s crystallographic relationship.
After affirming from diffraction patterns, there are three chemical compositions in the carbon nanotubes, including Fe3C、
目次 Table of Contents
目錄
目 錄................................................................................. Ⅲ
表目錄.................................................................................Ⅵ
圖目錄.................................................................................Ⅶ
第一章文獻回顧....................................................................1
1-1奈米碳管的簡介..........................................................1
1-2奈米碳管的結構..........................................................3
1-3奈米碳管的特性..........................................................5
1-3-1場發射特性.............................................................5
1-3-2導電性....................................................................6
1-3-3機械性質................................................................6
1-3-4 熱傳導性...............................................................6
1-4奈米碳管之主要製備...................................................7
1-4-1 電弧放電法...........................................................7
1-4-2雷射剝削法.............................................................8
1-4-3化學氣相沉積法.....................................................9
1-4-3-1熱分解氣相沉積法.............................................9
1-4-3-2電漿輔助化學氣相沉積法................................10
1-4-3-3微波電漿輔助化學氣相沉積法........................12
1-4-4太陽能法................................................................12
1-5奈米碳管的氣相生長機制..........................................13
1-5-1碳原子的擴散&#63799;徑............................................... 16
1-5-2擴散驅動力.......................................................... 18
1-6奈米碳管的應用........................................................20
1-6-1電子光電方面上的應用........................................20
1-6-2複合材料之應用...................................................21
1-6-3儲氫材料..............................................................21
1-6-4顯微鏡的掃描探針................................................21
1-7碳管的形狀................................................................22
1-8 研究動機與目的.......................................................22
第二章實驗步驟及流程.......................................................24
2-1觸媒溶液的配置........................................................24
2-1-1含觸媒溶液的藥品...............................................24
2-1-2製作觸媒溶液的步驟.................. .........................25
2-2膜的製作...................................................................26
2-3化學氣相沉積製程.....................................................26
2-3-1成長碳管熱處理時程............................................28
2-4檢測儀器...................................................................29
2-4-1 X-Ray繞射儀(XRD).............................................29
2-4-2掃描式電子顯微鏡(SEM) ....................................29
2-4-3穿透式電子顯微鏡(TEM).....................................29
第三章 實驗結果................................................................31
3-1 X-ray繞射分析.........................................................31
3-2 SEM實驗觀察與分析...............................................34
3-3 TEM實驗觀察與分析................................................38
3-3-1 TEM結果分析......................................................56
第四章 結論.......................................................................58
第五章 參考文獻................................................................59
第六章 附錄.......................................................................64








表目錄
表4-12c 在碳管頂端的化合物Fe3C 與其他可能的相……41
表6-2-1 JCPDS Cards for Fe2SiO4....................................65
表6-2-2 JCPDS Cards for Fe3C.........................................67
表6-4 Calibration of 3010AEM. ........................................71














圖目錄
圖1-1 碳的四種結構............................................................2
圖1-2 奈米碳管TEM影像圖(a)五壁奈米碳管(b)二壁奈米碳管(c)七壁奈米碳管.................................................... 4
圖1-3 單層奈米碳管三種不同結構......................................4
圖1-4 二維石墨平面向量表示CNT結構............................ 5
圖1-5 電弧放電法設備圖.....................................................8
圖1-6 雷射剝削法設備圖.....................................................9
圖1-7 熱分解氣相沉積法...................................................10
圖1-8 電漿輔助化學氣相沉積法設備示意圖......................11
圖1-9 微波電漿輔助化學氣相沉積法設備示意圖.............. 12
圖1-10 太陽能法設備示意圖.............................................13
圖1-11 化學氣相沉積法之生長機制四步驟.......................15
圖1-12碳經由觸媒擴散成長機構的示意圖....................... 16
圖1-13 由觸媒表面擴散成長機構之示意圖.......................17
圖1-14 由觸媒成長過程示意圖.........................................18
圖1-15 用鎳當觸媒,碳管與中間亦出現鎳.......................19
圖1-16 (a) Y字型的碳管(b) 竹節狀的碳管........................22
圖 2-1實驗總流程圖..........................................................24
圖2-2 製作觸媒溶液流程圖...............................................26
圖2-3 水平式管狀爐裝置...................................................27
圖2-4化學氣相沉積法成長碳管熱處理時程圖...................28
圖3-1 樣品的XRD結果....................................................32
圖3-2 樣品所做的24O~27O的XRD結果...........................32
圖3-3 樣品經過XRD繞射累積三次..................................33
圖3-4 碳管簇.....................................................................35
圖3-5碳管簇以及SEI、BEI與EDS 分析............................35
圖3-6 SEI、BEI與EDS 分析(一)....................................36
圖3-7 SEI、BEI與EDS 分析(二)......................................36
圖3-8 SEI、BEI與EDS 分析(三).....................................37
圖3-9 (a)在碳管頂端的化合物Fe3C (b)局部放大圖...........39
圖3-10為圖3-9(b)碳管出現的面以及Fe3C在Z = [100]的繞射圖....................................................................................39
圖3-11 在碳管頂端的化合物Fe3C....................................40
圖3-12 為圖3-11中Fe3C在Z = [100]的繞射圖.................40
圖3-13 非晶質的碳管出現的相..........................................41
圖3-14 在碳管頂端的化合物Fe3C....................................42
圖3-15 Fe3C在Z = [122]的繞射圖....................................42
圖3-16 (a)在碳管頂端的Fe3C (b)為局部放大圖................ 43
圖3-17 為圖3-16中(b)Fe3C的繞射圖..............................43
圖3-18 (a)在碳管頂端的Fe3C (b)為局部放大圖................44
圖3-19 為圖3-18中(b)Fe3C的繞射圖..............................44
圖3-20 (a)在碳管中間的Fe3C (b)為局部放大圖.................45
圖3-21為圖3-20中(b)Fe3C的繞射圖................................45
圖3-22 (a)在碳管中間的
參考文獻 References
[1] R. Iley and H. L. Riley, J. Chem. Soc. (1948) 1362
[2] H. W. Kroto, J. R. Heath, S. C. O. Brien, Nature, 318, 162, (1985)
[3] S. Iijima, Helical microtubules of graphic carbon, Nature, 354, 56, (1991)
[4] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 603, (1993)
[5] D. S. Bethune, C. H. Kiang, M.S. deVries, G. Gorman, R. saroy,
J. Vazguez, and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls,” Nature, 605, (1993)
[6] M. S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotube,” carbon, 883~891, (1995)
[7] T. W. Ebbesen, “Carbon nanotubes,” Ann. Rev. Mater. Sci. , 24, 235, (1994)
[8] W. A. de Heer, “A Carbon nanotube field-emission electron source,” Science, 1179, (1995)
[9] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smally, L. J. Geerligs and C. Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, 474, (1997)
[10] Y. I. Prylutsky et al., “Molecular dynamics simulation of mechanical, vibractional and electronic proprttities of carbon nanotubes,” Computational Materials Science, 352~355 , (2000)
[11] J. Hone et al., Thermal conductivity of single-walled carbon nanotubes, Synthetic Metals , 2498, (1999)
[12] A. Thess, P. Nikolaev, H. Dai, C. Xu, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, R. E. Smally, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 483~487, (1996)
[13] C. Journet, “Production of carbon nanotubes”, Appl. Phys. A,67, 1~9 (1998)
[14] R. T. K. Barker, P. S. Harris, R. B. Thomas and R. J. Waite, “Formation offilamentous carbon from iron , cobalt, and
chromium catalyzed decomposition of acetylene”, Journal of catalysis, 30, 86~95,1973.
[15] T. Baird, J. R. Fryer and B. Grant, “Carbon formation on iron andnickel foils by hydrocarbon pyrolysis—reactions at 700°C,” Carbon, 12, 591~602 (1974)
[16] A. Oberlin and M. EndoT. Koyama, “Filamentous growth of carbonthrough benzene decomposition,” Journal of Crystal Growth, 32,335~349 (1976)
[17] G. G. Tibbett, “Vapor-grown Carbon Fibers: Staus and Prospect,” carbon, 745, (1989)
[18] D. C. Li, L. Dai, S. Huang, A. W. H. Mau and Z. L. Wang, “Structure and growth of aligned carbon nanotube films by pyrolysis,” Chemical Physics Letters, 316 [5-6], 349~355, (2001)
[19] R. T. Baker, “Catalytic growth of carbon filament,” Carbon, 27, 315, (1989)
[20] J. R. Nielsen, D. L. Trimm, “Mechanism of carbon on nickel containing catalysts,” J. Catal. , 48 ,155, (1977)
[21] X. P. Gao, Y. Zhang, X. Chen, G. L. Pan, J. Yan, F. Wu, H. T. Yuan, D. Y. Song, “Carbon nanotubes filled with metallic nanowires,” Carbon, 42, [1], 47-52, (2004)
[22] H. Kim, W. Sigmund, “Iron nanoparticles in carbon nanotubes at various temperatures,” Journal of Crystal Growth, 276, [3-4], 594-605, (2005)
[23] H. Kim, W. Sigmund, “Iron particles in carbon nanotubes,” Carbon, 43, [8], 1743-1748, (2005)
[24] 李元堯, 21世紀尖端材料-奈米碳管, 化工技術期刊-奈米材料與應用專輯, 11, (3), 140~159, 民國92年
[25] Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY,Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG and Kim JM, “Application of carbon nanotubes to field emission display,” Diamond and Related Materials, 10, [2], 265~270, (2001)
[26] Dillon AC, Jones KM, Bekkedahl TA, Kiang CH, Bethune DS and Heben MJ, “Storage of hydrogen in single-walled carbon nanotubes,” Nature, 386, 377~379, (1997)
[27] H. Dai, J. H. Hafer, A. G. Rinzler, D. T. Colbert, and R. E. Smally “Nanotubes as nanoprobes in scanning probe microscopy” Nature, 384 (1996),147
[28] C. J. Lee, J. H. Park and J. Park, “Synthesis ofbamboo-shaped multiwalled carbon nanotubes using thermal chemical vapor deposition,” Chemical physics letters, 323, [5-6], 560-565, (2000)
[29] M. Jung, Y. K. Eun, , J. K. Lee, Y. J. Baik, K. R. Lee, P. J. Wan, “Growth of carbon nanotubes by chemical vapor deposition,” Diamond and related materials, 10, [3-7], 1235-1240, (2001)
[30] F. L. Deepak, N. S. John, A. Govindaraj, G. U. Kulkarni and C. N. R. Rao,“Nature and electronic properties of Y-junctions in CNTs and N-doped CNTs obtained by the pyrolysis of organometallic precursors,” Chemical physics letters, 411, [4-6], 468-473, (2005)
[31] S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Iavanov, J. B. Nagy, “A formation mechanism for catalycally grown helix-shaped graphite nanotubes,” science, 265, 635-639, (1994)
[32] Y. YAO, L. K. L. FALK, R. E. MORJAN, O. A. NERUSHEV, E. E. B. CAMPBELL, “ Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part Ⅱ: the nanotube film, Journal of materials science: materials in electronics,” 15, 583~594, (2004)

[33] M. Monthioux, “Filling single wall carbon nanotubes,” Carbon, 40, 1809~1823, (2004)
[34] X. P. Gao, Y. Zhang, X. Chen, G. L. Pan, J. Yan, F. Wu, H. T. Yuan, F. Wu, H. T. Yuan, D. Y. Song, Carbon nanotubes filled with metallic nanowires, Carbon, 42, 47~52, (2004)
[35] D.GOLBERG, F.-F. Xu, Y. BANDO, “Filling boron nitride nanotubes with metals,” Appl. Phys. A, 76, 479~485, (2003)
[36] Y.YAO, L. K. L. FALK, R. E. MORJAN, O. A. NERUSHEV, E. E. B. CAMPBELL, Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part Ⅰ: The silicon substrate/nanotube film interface, Journal of materials science: materials in electronics, 15, 533~543, (2004)
[37] E. F. Kukovistsky, S. G. L’vov, N.A. Sainov,“ VLS-growth of
carbon nanotubes from the vapor.” Chem. Phys. Lett., 317,
65–70, (2000)
[38] Kanzow H, Ding A. “Formation mechanism of single-wall
carbon nanotubes on liquid-metal particles.” Phys. Rev. B, 60,
11180, (1999)
[39] Gorbunov A, Jost O, Pompe W, Graff, “A Solid–liquid–solid growth mechanism of single-wall carbon nanotubes.” Carbon
, 40, 113–118, (2002)
[40] Wagner RS, Ellis WC. “Vapor–liquid–solid mechanism of
single crystal growth.” Appl. Phys. Lett., 4, 89–90, (1964)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code