Responsive image
博碩士論文 etd-0710106-221155 詳細資訊
Title page for etd-0710106-221155
論文名稱
Title
二維光子晶體微共振腔與側向耦合分佈式回授雷射之研製
The Study and Fabrication of 2D Photonic Crystal Microcavity and LC-DFB laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-20
繳交日期
Date of Submission
2006-07-10
關鍵字
Keywords
光子晶體、電子束微影
photonic crystal, E-beam lithography
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
本論文利用電子束微影術在InGaAs/InAlGaAs成長在InP基板上其發光波長在1550nm,製作二維光子晶體與側向耦合分佈式回授雷射。以及在980nm的磊晶片方面主要是作二維光子晶體微共振腔,其磊晶結構為InGaAs/GaAs基板上材料方面,我們使用本實驗室之分子束磊晶所成長之磊晶片,在本論文中將包含二維光子晶體與側向耦合分佈式回授雷射之設計及製程。
在側向耦合分佈式回授雷射(即LC(laterally coupled) DFB (distributed feedback)雷射)方面,我們設計透過改變光柵的幾何形狀及長度來形成適當的光柵,而適當的光柵週期所造成的建設性干涉會形成耦合現象,針對不同的光柵週期長度,可發現在共振腔中的耦合強度的改變,我們目前設計一個週期為722nm的光柵,其中反射鏡的厚度為180.55nm,空氣間格為541.65nm,來完成元件的製作。
在1550nm二維光子晶體微共振腔方面,我們設計具有TE極化不存在的光子能隙之二維光子晶體,結構為空氣圓柱呈三角晶格方式排列,圓柱半徑為456nm,晶格常數為1139nm,並在此光子晶體中製作一點缺陷形成單點缺陷微共振腔,我們已完成光子能隙、缺陷模態之計算。
而在製程部份我們使用電子束微影術在光阻上製作圖案,並利用金屬掀離技術製做出之後的蝕刻遮罩,再利用乾蝕刻技術將圖案轉移到底下的介電質及磊晶片上。我們也可用相同方法來製作出980nm光子晶體。
Abstract
In this thesis, we fabricated the 2D photonic crystal microcavity and laterally coupled distributed feedback laser on InGaAs/InAlGaAs wafers by E-beam lithography. We also fabricated the 2D photonic crystal microcavity on the InGaAs/GaAs substrate at 980nm emission wavelength. The wafer are grown by molecular beam epitaxy (MBE).
For the laterally coupled distributed feedback laser (LC-DFB laser) , we changed the grating shape and length to form proper grating, and it will make constructive diffraction and coupling. We design the mirror width is 180.55nm and the air gap is 541.65nm.
For the 2D photonic crystal (2DPC) microcavity, a triangular array of air columns was adopted. The lattice constant and air columns radius are 1139nm and 456nm, respectively. The TE modes photonic band gap of this structure are corresponding to wavelength range in 1522.72nm~1617.89nm. We placed single defect in the 2DPCs to form 2DPC microcavities and the corresponding defect modes are 1549.23nm and 1550.08nm. We have simulated the photonic bandgap and fabricated the devices by E-beam lithography and deep dry etching process. Also, we can use the same method to fabricate 980nm photonic crystal.
目次 Table of Contents
第一章 緒論............................................. 1
1-1 前言......................................... 1
1-2 光子晶體..................................... 1
1-2-1 一維光子晶體.............................. 2
1-2-2 二維光子晶體.............................. 2
1-3 論文架構.................................... 2

第二章 元件設計與模擬................................... 4
2-1 光子晶體介紹................................. 4
2-1-1 何為光子晶體............................ 4
2-1-2 光子晶體中的缺陷........................ 5
2-2 側向耦合分佈式回授雷射介紹....................5
2-3 元件設計與模擬................................6
2-3-1 磊晶片結構.............................. 6
2-3-2 二維光子晶體........................... 12
2-3-3 側向耦合分佈式回授雷射................. 22


第三章 元件製程........................................ 26
3-1 基本原理.................................... 26
3-2 儀器架構.................................... 27
3-3 製程示意圖...................................28
3-3-1 二維光子晶體.......................... 28
3-3-2 側向耦合分佈式回授雷射................ 29
3-4 製程步驟及實驗結果...................... 30
3-4-1 二維光子晶體(1550nm波長)............. 30
3-4-2 二維光子晶體(980nm波長)............... 36
3-4-3 側向耦合分佈式回授雷射.................38

第四章 量測結果........................................ 45

第五章 結果.............................................49

參考文獻................................................ 51


圖目錄

第二章 元件設計與模擬
圖(a) 具有點狀缺陷的光子晶體...................... 5
圖(b) 具有線狀缺陷的光子晶體.......................5
圖2-1 C044 PL光譜圖............................. 8
圖2-2 C100 PL光譜圖............................ 11
圖2-3 C111 PL光譜圖............................ 11
圖2-4 TLAC結構示意圖.......................... 13
圖2-5 TLAC結構之unit cell........................ 13
圖2-6 TLA結構RA比與光子能隙關係圖............. 15
圖2-7 TLAC結構材料和空氣折射率之差與光子能隙關係圖.......................................15
圖2-8 以C100為基板之RA比與光子能隙之關係圖.....16
圖2-9 完美TLAC模擬結構示意圖..... .......... ...17
圖2-10 完整TLAC結構TE及TM光子能帶圖......... 18
圖2-11 完整TLAC結構TE光子能帶圖............... 18
圖2-12 完整TLAC結構TE光子能帶放大圖........... 19
圖2-13 含有單一點缺陷之TLAC模擬結構圖.......... 20
圖2-14 模擬含單一點缺陷TLAC結構所使用之super cell
........................................ 20
圖2-15 含單一點缺陷TLAC結構之TE光子能帶圖..... 21
圖2-16 光波在週期為Λ的光柵結構中產生布拉格散射示意圖...................................... 23
圖2-17 光柵(grating)示意圖........................ 24
圖2-18 觀察反射率變化之模擬結構圖............... 24
圖2-19 光柵週期為100............................ 25

第三章 元件製程
圖3-1 電子打斷化學鍵示意圖....................... 26
圖3-2 儀器裝置圖................................. 27
圖3-3 經lift-off後之光子晶體........................ 32
圖3-4 經RIE之後的光子晶體........................ 33
圖3-5 光子晶體微共振腔正面放大圖(乾蝕刻1分鐘).... 34
圖3-6 光子晶體微共振腔正面放大圖(乾蝕刻2分鐘).... 34
圖3-7 剖面圖..................................... 35
圖3-8 使用HF lift-off後的光子晶體................... 35
圖3-9完成之光子晶體微共振腔.......................36
圖3-10完成之光子晶體一層漸變式微共振腔.............36
圖3-11完成之光子晶體二層漸變式微共振腔.............37
圖3-12 定位示意圖................................. 40
圖3-13 金屬lift off完的圖片.......................... 41
圖3-14 使用RIE蝕刻過後的圖片...................... 42
圖3-15 使用ICPRIE蝕刻過後的DFB laser圖............ 42
圖3-16 使用ICPRIE蝕刻過後的放大圖之一............. 43
圖3-17 使用ICPRIE蝕刻過後的放大圖之二.............43

第四章 量測結果
圖4-1(a) 光膜分佈圖.................................45
圖4-1(b) PL光譜圖..................................45
圖4-2(a) 試片的CCD圖片............................46
圖4-2(b) 試片放大圖.................................46
圖4-3(a)pumping 2mw的光膜圖........................46
圖4-3(b)pumping 2mw的光譜圖........................46
圖4-4(a)pumping 1.5mw的光膜圖......................47
圖4-4(b)pumping 1.5mw的光譜圖......................47
圖4-5(a)pumping 1.0mw的光膜圖......................47
圖4-5(b)pumping 1.0mw的光譜圖......................47
圖4-6(a)pumping 0.5mw的光膜圖......................48
圖4-6(b)pumping 0.5mw的光譜圖......................48
圖4-7(b)pumping 0.2mw的光譜圖......................48
圖4-7(b)pumping 0.2mw的光譜圖......................48















表目錄

第二章 元件設計與模擬
表2-1 C044磊晶結構表............................7
表2-2 C100 磊晶結構表............................9
表2-3 C111磊晶結構表............................10
參考文獻 References
[1] T. Takagi, “Refractive index of Ga1-xInxAs prepared by vapor-phase epitaxy,” Japanese Journal of Applied Physics, vol. 17, no. 10, p. 1813, 1978.
[2] Bell Laboratories, ”Refractive index of Ga1-xAlxAs” Solid State Communication, vol. 15, p. 59-63, 1974.
[3] R. Jambunathan, and J. Singh, “Design studies for distributed Bragg reflectors for short-cavity edge-emitting lasers,” IEEE Journal of Quantum Electronics, vol. 33, no. 7, p. 1180, 1997.
[4] Bong-Shik Song, S. Noda, T. Asano, Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature material, vol 4,
March 2005, p.207-210.
[5] Y. Akahane, T. Asano, Bong-Shik Song, S. Noda,”High-Q photonic nanocavity in a two-dimentional photonic crystal.” Nature, vol. 425,
October 2003, p. 944-947.
[6] S. Thomas, S. W. Pang, “Dry etching of horizontal distributed Bragg reflector mirrors for waveguide lasers.” J. Vac. Sci. Technol. B149(6),
Nov/Dec 1996, p. 4119-4123.
[7] Y. Arakawa, and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Applied Physics Letters, vol. 40, no. 11, p. 939, 1982.
[8] Y. Sugimoto, N. Ikeda, N. Carlesson, K. Asakawa, N. Kawai, and K. Inoue, “Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,” Journal of Applied Physics, vol. 91, no. 3, p. 922, 2002.



[9] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, p. 2059, 1987.
[10] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters, vol. 58, no. 23, p. 2486, 1987.
[11] E. Yablonovitch, “How to be truly photonic,” Science, vol. 289, p. 557, 2000.
[12] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, p. 143, 1997.
[13] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, vol. 407, p. 608, 2000.
[14] O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, vol. 284, p. 1819, 1999.
[15] K. Shin, M. Tamura, A. Kasukawa, N. Serizawa, S. Kurihashi, S. Tamura, and S. Arai, “Low threshold current density operation of GaInAsP-InP laser with multiple reflector microcavities,” IEEE Photonics Technology Letters, vol. 7, p. 1119, 1995.
[16] T. Baba, M. Hamasaki, N. Watanabe, P. Kaewplung, A. Matsutani, T. Mukaihara, F. Koyama, and K. Iga, “A novel short-cavity laser with deep-grating distributed Bragg reflectors,” Japanese Journal of Applied Physics, vol. 35, part 1, no. 2B, p. 1390, 1996.
[17] E. Höfling, R. Werner, F. Schäfer, J. P. Reithmaier, and A. Forchel, “Short-cavity edge-emitting lasers with deeply etched distributed Bragg mirrors,” Electronics Letters, vol. 35, no. 2, p. 154, 1999.


[18] E. Höfling, F. Schäfer, J. P. Reithmaier, and A. Forchel, “Edge-emitting GaInAs-AlGaAs microlasers,” IEEE Photonics Technology Letters, vol. 11, no. 8, p. 943, 1999.
[20] O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photonics Technology Letters, vol. 12, no. 9, p. 1126, 2000.
[21] K. Avary, S.Rennon, F. Klopf, J.P. Reithmaier, A. Forchel, “Reactive ion etching of deeply etched DBR-structures with reduced air-gaps for highly reflective monolithically integrated laser mirrors.” Microelectronic engineering, 57-58, P. 593-598, 2001.
[22] Jian Wang, Jian-Bo Tian, Peng-Fei Cai, Bing Xiong, Chang-Zheng Sun, and Yi Luo,“1.55-μm AlGaInAs–InP laterally coupled distributed feedback laser.” IEEE Photonics Technology Letters, vol. 17, no. 7, 2005.
[23] 蔡雅芝,“淺談光子晶體”,物理雙月刊,二十一卷,四期,p. 445,1999.
[24] 楊志忠, “新世紀奈米級光電材料結構 – 光子晶體”, 物理雙月刊,二十三卷,六期,p.647-651,2001.
[25] 沈彥良,“應用電子束微影術於格式化半導體基板與光子晶體之研製”,國立中山大學光電工程研究所碩士論文,2004.
[26] 李明駿,“二維與改良型一維光子晶體微共振腔之研製”
,國立中山大學光電工程研究所碩士論文,2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.21.106.69
論文開放下載的時間是 校外不公開

Your IP address is 3.21.106.69
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code