Responsive image
博碩士論文 etd-0710107-121223 詳細資訊
Title page for etd-0710107-121223
論文名稱
Title
橫向結晶複晶矽薄膜電晶體電致劣化機制之探討
Study on Degradation mechanism of Crystallized Laterally Grown Poly-Si TFT under Electrical Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-10
關鍵字
Keywords
橫向結晶複晶矽薄膜電晶體、劣化
Stress, Crystallized Laterally Grown Poly-Si TFT
統計
Statistics
本論文已被瀏覽 5728 次,被下載 13
The thesis/dissertation has been browsed 5728 times, has been downloaded 13 times.
中文摘要
在這篇論文中,我們將研究低溫複晶矽薄膜電晶體(LTPS TFTs)在經過電性stress後的劣化機制。電致劣化可以分為直流以及交流兩種。我們利用直流操作和交流操作這兩個模式去模擬N型和P型複晶矽薄膜電晶體在使用後劣化的情況,利用電性的量測去研究晶界對於複晶矽薄膜電晶體劣化的影響。此外,亦採用電容的量測確定劣化機制。
在N型連續橫向結晶複晶矽薄膜電晶體的實驗中,通道內有晶界的電晶體比較能夠抵抗直流的操作,但是卻較不能抵抗交流的操作。我們利用半導體元件模擬軟體的模擬結果來解釋這個現象。
在P型薄膜電晶體中,電性的提升在無論直流或是交流stress中都可以觀察到。汲極電流變化量與stress時間之間存在著次方關係,此次方的大小有關於有效通道長度的縮短速率。而無論在直流或是交流stress中,都存在著兩個因素影響元件的變化程度。其中一個因素是因為stress造成的主動層劣化,而另一個因素則是有效通道長度的縮減。在這兩個因素的競爭下,通道內有晶界的電晶體在直流stress 下,電性的提升較為明顯;然而在交流stress下,因為晶界的存在導致複晶矽薄膜劣化較為嚴重,導致電性的提升程度被抑制。
Abstract
In this thesis, we will investigate the degradation of the low temperature polycrystalline silicon TFTs (LTPS TFTS) under the electrical stress. The electrical stress is divided into two parts of ac stress and dc stress. We used ac stress and dc stress conditions to stress different TFTs respectively and investigate the influence of grain boundary in n-type TFT and p-type TFT by use of electrical analysis. On the other hand, degradation mechanism was confirmed by measured capacitance.
In n-type TFT, the SLS poly-Si TFT which contains GB perpendicular to the channel direction owns the higher ability against dc stress and poorer ability against ac stress than the poly-Si TFT which does not contain GB. The physical mechanism for these results has been reasonably deduced by use of TFT device simulation tool (ISE_TCAD).
In p-type TFT, the enhancement phenomenon is always observed after dc or ac stress. There are both existed a power-law between the variation of the drain current with stress time. The slope of power-law is related to the shortening speed of effective channel length. In either dc stress or ac stress, there are two effective factors. The one factors of them is the degradation of poly-Si film, and another one is the effective channel length shortening. In the competition of these two effective factors, the GB-TFT has more obvious enhancement than GB-TFT during dc stress. Nevertheless, during the ac stress the GB-TFT is without larger enhancement than NGB-TFT because of serious poly-Si film damage.
目次 Table of Contents
Content
Chapter 1- Introduction
1.1 Overview………………………………………………………….1
1.2 Motivation………………………………………………………...5
Chapter 2- Device fabrication and electrical characterization
2.1 Device Fabrication………………………………………………..7
2.1.1 Sequential lateral solidification crystallization(SLS)………...7
2.1.2 Fabrication Processes of SLS Device………………………… 11
2.2 Basic characterization of the LTPS TFT………………………...13
2.2.1 Transfer characteristics…………………………………………13
2.2.2 Defects in poly-Si TFTs………………………………………… 14
2.2.3 The C-V transfer characteristics in poly-Si TFTs…………... 16
2.2.4 Seto’ model………………………………………………………..17
Chapter 3- Instruments and device parameter extraction
3.1 Instruments and measurement setup……………………………. 21
3.1.1 Instruments………………………………………………………. 21
3.1.2 Set up instruments for I-V……………………………………… 22
3.2 Determination of the threshold voltage………………………… 23
3.3 Determination of the field-effect mobility………………………25
3.4 Determination of on/off current ratio…………………………....26
3.5 Determination of the subthreshold swing……………………….27
Chapter 4- Results and Discussion
4.1 The Degradation of N-TFT under stress………………………...28
4.1.1 Experiment………………………………………………………..28
4.1.2 The Degradation of N-type TFT under DC Stress…………...29
4.1.3 The Degradation of N-type TFT under dynamic Stress……..30
4.2 The Degradation of P-type TFT under Stress…………………...32
4.2.1 Experiment………………………………………………………..32
4.2.2 The Degradation of p-type TFT under DC Stress…………... 32
4.2.3 The Degradation of p-type TFT under dynamic Stress…….. 33
Chapter 5- Conclusion……………………………………………..36
Reference…………………………………………………………... 37
參考文獻 References
Reference
Chapter 1
[1.1] M. Furuta, S. Maegawa, H. Sano, T. Yoshioka, Y. Uraoka, H. Tsutsu, I. Kobayashi, T. Kawamura, and Y. Miyata, “A 2.8-in. diagonal low-temperature-purcessed poly-Si TFT with a new LDD structure,” in Proc. Euro Display’96, pp. 547–550,1996.
[1.2] S. Zhang, C. Zhu, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 569–575, May 2000.
[1.3] Z. Meng, M. Wang, and M. Wong, “High performance low temperature metal-induced unilaterally crystallized polycrystalline silicon thin film transistors for system-on-panel applications,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 404–409, May 2000.
[1.4] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays ,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001
[1.5] Lee, B. Hirayama, Y. Kubota, Y. Imai, S. Imaya, A. Katayama, M. Kato, K. Ishikawa, A. Ikeda, T. Kurokawa, Y. Ozaki, T. Mutaguch, K. Yamazaki, S. Sharp, Nara, Japan. “A CPU on a glass substrate using CG-silicon TFTs” IEEE Trans. Electron Devices, vol. 1, pp. 164-165, 2003
[1.6] H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992
[1.7] T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[1.8] K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, ISSCC Digest of Tech., p.166, 1985
[1.9] N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[1.10] T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi Integrated Contact Type Linear Image Sensors with Poly-Si TFT’s Analog Readout Circuits and Dynamic Shift Registers,” IEEE Trans. Electron Devices, Vol.38, No.5,pp. 1086-1039,1991.
[1.11] Y. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “ A Thermal Printer Head with CMOS Thin-Film Transistors and Heating Elements Integrated on a Chip,” IEEE Solid-State Circuits Conference (ISSCC), p.266, 1998.
[1.12] N. Yamauchi, Y., Inaba, and M. Okamura, “An Integrated Photodetector-Amplifier using a-Si p-i-n Photodiodes and Poly-Si Thin-Film Transistors,” IEEE Photonic Tech. Lett., Vol. 5,p. 319, 1993.
[1.13] M. G. Clark, “Current Status and Future Prospects of Poly-Si,” IEE Proc. Circuits Devices Syst., Vol. 141, No. 1, p3.3,1994.
[1.14] T. Harada, A .Sato, M. Kinjo, Y. Katayama, S. Sato, and K. Nakajima, “New nonvolatile analog memories for analog data processing, ” Jap. J. Appl. Phys., 39, 2291, 2000
[1.15] K. Banerjee, S. J. Souri, P. Kapur and K. C. Saraswat: Proc. IEEE 89 602 2000.
[1.16] J. B. Boyce and P. Mei, “Laser crystallization for polycrystalline silicon device applications,” in Technology and Applications of Amorphous Silicon, R. A. Street, Ed. New York: Springer-Verlag, pp. 94–146, 2000.
[1.17] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[1.18] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[1.19] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[1.20] C. A. Dimitriadis, M. Kimura, M. Miyasaka, S. Inoue, F. V. Farmakis, J. Brini, and G. Kamarinos, “Effect of grain boundaries on hot-carrier induced degradation in large grain polysilicon thin-film transistors,” Solid State Electron., vol. 44, pp. 2045–2051, 2000.
[1.21] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Analysis of hot-carrier effects in low temperature Poly-Si TFTs using device simulator,” in Proc. IEEE Int. Csonf. Microelectronic Test Structures, pp. 251–256, Mar. 2001.
[1.22] S. Inoue and T. Shimoda, “Investigation of the relationship between hotcarrier degradation and kink effect in low-temperature polySi TFTs,” in Proc. SID, pp. 452–5, 1999.
[1.23] I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Chiang, “Mechanism of device degradation in n- and p-channel polysilicon TFTs by electrical stressing,” IEEE Electron Device Lett., vol. 11, no. 4, pp. 167–169, Apr. 1990.
[1.24] F. V. Farmakis, J. Brini, G. Kamarinos, and C. A. Dimitriadis, “Anomalous
turn-on voltage degradation during hot-carrier stress in polycrystalline silicon thin-film transistors,” IEEE Electron Device Lett., vol. 22, no. 2, pp. 74–6, Feb. 2001.
[1.25] F. V. Farmakis, C. A. Dimitriadis, J. Brini, G. Kamarinos, V. K. Gueorguiev, and T. E. Ivanov, “Interface state generation during electrical stress in n-channel undoped hydrogenated polysilicon thin-film transistors,” Electron. Lett., vol. 34, pp. 2356–2357, 1998.
[1.26] K. M. Chang, Y. H. Chung, G. M. Lin, C. G. Deng, and J. H. Lin, “Enhanced degradation in polycrystalline silicon thin-film transistors under dynamic hot-carrier stress,” IEEE Electron Device Lett., vol. 22, no. 10, pp. 475–477, Oct. 2001.
[1.27] K. M. Chang, Y. H. Chung, and G. M. Lin, “Hot carrier induced degradation in the low temperature processed polycrystalline silicon thin film transistors using the dynamic stress,” Jpn. J. Appl. Phys., vol. 41, pp. 1941–6, 2002.
[1.28] Y. Uraoka, N. Hirai, H. Yano, T. Hatayama, and T. Fuyuki, “Hot carrier analysis in low-temperature polySi TFTs using picosecond emission microscope,” IEEE Trans. Electron Devices, vol. 51, no. 1, pp. 28–35, Jan. 2004.
[1.29] Y. Toyota, T. Shiba, and M. Ohkura, “A new model for device degradation in low-temperature N-channel polycrystalline silicon TFTs under ac stress,” IEEE Trans. Electron Devices, vol. 51, no. 6, pp. 927–933, Jun. 2004.
[1.30] Y. Uraoka, T. Hatayama, T. Fuyuki, T. Kawamura, and Y. Tsuchihashi, “Reliability of low temperature poly-silicon TFT’s under dynamic stress,” in Proc. AM-LCD 2000, pp. 181–184, 2000.
[1.31] Y. Uraoka, T. Hatayama, and Y. Fuyuki, “Reliability evaluation method of low temperature poly-silicon TFT’s under dynamic stress,” in Proc. IEEE Int. Conference on Microelectronic Test Structures, pp. 158–162, Mar. 2000.
Reference
Chapter 2
[2.1] N. Ibaraki: SID ’99 Dig., 1999, p. 172.
[2.2] T. Nishibe: Eurodisplay, 2002, p. 269.
[2.3] S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Gowers: IEEE Trans. Electron Devices 40 (1993) 407.
[2.4] M. Hatano and T. Sjiba: SID’02 Dig., 2002, p. 158.
[2.5] F. Takeuch, M. Takei, K. Hotta, K. Yoshino, K. Suga, A. Hara, and N. Sasaki: AM-LCD’01, 2001, p. 251.
[2.6] K. Yamazaki, T. Kudo, K. Seike, D. Ichishima, and C. Jin: AMLCD’ 02,2002, p. 149.
[2.7] A. Hara, F. Takeuchi, M. Takei, K. Suga, M. Chida, Y. Sano, and N. Sasaki:AMLCD’02, 2002, p. 227.
[2.8] R. S. Sposili and J. S. Im: Appl. Phys. Lett. 69 (1996) 2864.
[2.9] J. S. Im and R. S. Sposili: MRS Bulletin 21 (1996) 39.
[2.10] J. S. Im, M. A. Crowder, R. S. Sposili, J. P. Leonard, H. J. Kim, J. H. Yoon, V. V. Gupta, H. J. Song, H. S. Cho: Phys. Status Solidi 166 (1998) 603.
[2.11] J. Y. Park, H. H. Park, K. Y. Lee, H. D. Kim, H. K. Chung: AMLCD03, 2003, p. 149.
[2.12] M. A. Crowder, P. G. Carey, P. M. Smith, R. S. Sposili, H. S. Cho, J. S. Im: IEEE Electron Device Lett. 19 (1998) 306.
[2.13] Y. H. Jung, J. M. Yoon, M. S. Yang, W. K. Park, H. S. Soh: MRS Symp. Proc. 621, 2000, Q9.14.1.
[2.14] S. D. Brotherton, M. A. Crowder, A. B. Limanov, B. Turk and J. S. Im: Asia Display/IDW’01, 2001, p. 387.
[2.15] J. Y. W. Seto: J. Appl. Phys. 46 (1975) 5247.
[2.16] T. I. Kamins: Polycrystalline Silicon for Integrated Circuit Applications (Kluwer Academic, Boston, 1988).
[2.17] H. Takaoka, Y. Sato, T. Suzuki, T. Sasaki, H. Tanabe, H. Hayama: Asia Display/IDW ’01, 2001, p. 395.
[2.18] J. S. Im and H. J. Kim: Appl. Phys. Lett. 64 (1994) 2303.
[2.19] H. J. Kim and J. S. Im: Appl. Phys. Lett. 68 (1996) 1513.
[2.20] J. S. Im and H. J. Kim: Appl. Phys. Lett. 63 (1993) 1969
[2.21] P. S. Peercy, M. O. Thompson and J. Y. Tsao: MRS Symp. Proc. 80, 1987, p. 39.
[2.22] M. O. Thompson, G. J. Calvin, J. W. Mayer, P. S. Peercy, J. M.
Poate, D. C. Jacobson, A. G. Cullis and N. G. Chew: Phys. Rev. Lett. 52
(1984) 2360.
[2.23] H. Chern, C. Lee, and T. Lei, “Correlation of polysilicon thin filmtransistor characteristics to defect states via thermal annealing,”IEEE Trans. Electron Devices, vol. 41, p. 460, 1994.
[2.24] N. Lifshitz and S. Luryi, “Enhanced channel mobility in polysiliconthin film transistors,” IEEE Electron Device Lett., vol. 15, p. 274,1994.
[2.25] D. Straub, E. Lueder, T. Kallfass, and K. Schleupen, “An analyticalmodel for polycrystalline thin film transistors,” in Proc. Int. DisplayRes. Con$, 1994, p. 398.
[2.26] T. Li and P. Lin, “On the pseudo-subthreshold characteristics of polycrystallinesilicon thin film transistors with large grain size,” IEEE Electron Device Lett., vol. 14, p. 240, 1993.
[2.27] M. Shnr, M. Hack, and Y. Bvun, “Circuit model and uarameter extraction for polysilicon thin film transistors,” in Proc. 1993 Int.
Semiconductor Dev. Res. Symp., 1993, p. 165.
[2.28] M. Shur, M. Jacunski, and M. Hack, “Device and circuit models for
amorphous silicon and polysilicon thin film transistors used in high
definition display technology,” in Proc. Int. Display Res. Conf, 1994,p45
[2.29] J. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., vol. 46, p. 5247, 1975.
[2.30] T. Katoh and N. Hirashita, “Effects of trap state on field effect mobility of MOSFET’s formed on large grain polysilicon films,” Jpn. J. Appl. Phys., vol. 28, p. L2291, 1989.
[2.31] O.Bonnaud,”Polysiliocn thin film transistors for flat panel display
applications,”Proc.of ESSDERC’98, Editions Frontiers ED.A. Touboul.Y. Danto, J.P. Klien, H.Grunbacher,Inv.paper,42,1998.
[2.32] M.Jacunski, M. Shur, and M. Hack,”Threshold voltage, field-effect mobility, and gate-to-channel capacitance in polysilicon TFTs,” IEEE Trans. Electron Device, 43, 1433(1996).
[2.33] G.-Y. Yang, S,-H. Hur, and C.-H Han, “A Physical-Based Analytical Turn-On Model of Polysilicon Thin-Film Transistors for Circuie Simulation,” IEEE Trans. Electron Devices, 46(1), 165-172 (1999).
[2.34] J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982
[2.35] P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato,40
“Anomalous off-current mechanisms in n-channel poly-Si thin film
transistors.” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995
[2.36] M. Hack, I-W. Wu, T. H. King and A. G. Lewis, “Analysis of Leakage Currents in Poly-silicon Thin Film Transistors,” IEDM Tech. Dig., vol. 93, pp. 385-387, 1993
[2.37] N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki,
“Characteristics of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices,Vol.41, pp. 1876-1879, 1994.
[2.38] Kwon-Young Choi and Min-Koo Han, “A novel gate-overlapped LDD poly-Si thin-film transistor,” IEEE Electron Device Lett., Vol. 17, pp.566-568, 1996.
[2.39] N. D. Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French,“The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices,Vol. 43, No. 11, pp. 1930-1936, 1996.
[2.40] R. K. Watts and J. T. C. Lee, “Tenth-Micron Polysilicon Thin-film Transistors,” IEEE Electron Device Lett., Vol. 14, pp.515-517, 1993.
[2.41] “Polycrystalline silicon for integrated circuits and displays”, second
edition, written by Ted Kamins, pp.200-210.
Reference
Chapter 4
[4.1] P. T. Liu, H. Y. Lu, Y. C. Chen, and S. Chi, “Degradation of Laser-Crystallized Laterally Grown Poly-Si TFT under Dynamic Stress, ” IEEE ELECTRON DEVICE LETTERS, vol. 28, no. 5, MAY 2007
[4.2] Y. Uraoka, Y. Morita, H. Yano, T. Hatayama, and T. Fuyuki, “Gate length dependence of hot carrier reliability in low-temperature polycrystallinesilicon p-channel thin film transistors,” Jpn. J. Appl. Phys., vol. 41, no. 10, pp. 5894–5899, Oct. 2002.
[4.3] E. TAKEDA, A. SHIMIZU, and T. HAGIWARA, “Role of Hot-Hole Injection in Hot-Carrier Effects and the Small Degraded Channel Region in MOSFET’S, ” IEEE ELECTRON DEVICE LETTERS, vol. EDL-4, NO. 9, Sep 1983.
[4.4] K. C. Moon, J.-H. Lee, and M.-K. Han, “The Study of Hot-Carrier Stress on Poly-Si TFT Employing C-V Measurement. ”IEEE Trans. Electron Devices, vol. 52, no. 4 (2005).
[4.5] S. C. Huang, Y. H. Kao, Y. H. Tai , “Study on electrical degradation of p-type low-temperature polycrystalline silicon thin film transistors with C-V measurement analysis. ” Thin Solid Films, 2006 – Elsevier.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.204.24.82
論文開放下載的時間是 校外不公開

Your IP address is 44.204.24.82
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code