Responsive image
博碩士論文 etd-0710107-193739 詳細資訊
Title page for etd-0710107-193739
論文名稱
Title
利用磁控濺鍍合成鎂銅金屬薄膜及其特性分析
Preparation and Characterization of Mg-Cu Binary Metallic Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
170
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-10
關鍵字
Keywords
鎂銅、非晶質合金、濺鍍、薄膜
Mg-Cu, amorphous alloy, thin film, sputtering
統計
Statistics
本論文已被瀏覽 5698 次,被下載 652
The thesis/dissertation has been browsed 5698 times, has been downloaded 652 times.
中文摘要
近幾十年來,具有獨特的物理特性及化學特性之非晶質合金受到眾多學者的研究及探討。目前合成非晶質合金的方法為常見的為由液相至固相之液態激冷法。在2000年後,藉由物理氣相層積製備非晶質合金薄膜由於其應用潛力,因此越來越受到廣泛注意。

本實驗分別利用共濺鍍及多層膜兩種不同之製程來製備鎂銅金屬薄膜,接著再利用真空熱處理並藉由XRD觀察其結構之轉變。藉由XRD觀察可以發現,鎂銅共濺鍍薄膜,銅含量從38~82 at%,呈現為奈米鎂銅介金屬化合物及鎂銅非晶質之奈米複材。在423 K真空熱處理後,發現其結晶相會隨著成分所在之共晶區域有所差異。在MgCu2-Cu 區域中,熱處理後以奈米MgCu2為主;在Mg2Cu-MgCu2區域中則是以Mg2Cu及MgCu2為主。然而,鎂銅多層膜中,在經由413 K熱處理後發現其結晶相與其成分無關,均為Mg2Cu,這是由於擴散僅發生在介面附近以及鎂銅之介金屬化合物在低溫時,其最穩定相為Mg2Cu。

在此研究中,發現僅有利用共濺鍍製程有可能形成鎂銅非晶質合金薄膜,接著利用奈米壓痕技術量測Mg17.7Cu82.3, Mg23.5Cu76.5, 及Mg40.4Cu59.6之楊氏模數及硬度,可以發現到Mg23.5Cu76.5具有最高之楊氏模數及硬度為118 GPa及4.6 GPa,再利用TEM觀察Mg23.5Cu76.5共濺鍍薄膜,發現到其微結構呈現以MgCu2為強化相之鎂銅非晶質合金複材,因而表現出較高之楊氏模數及硬度。
Abstract
In this study, Mg-Cu thin film metallic thin films were fabricated via two ways, the co-deposition and post-annealing of the multilayered thin films. Amorphous Mg1-xCux, where x is from 38 to 82, thin films with nanocrystalline particles are able to be fabricated via co-sputtering. The mechanism of formation is different from the rapid quenching process.

For the Mg-Cu co-sputtering system, the mechanical properties of the Mg-Cu co-sputtered films were tested via MTS nanoindenter. Mg23.5Cu76.5 exhibits a higher Young’s modulus than Mg17.7Cu82.3 and Mg40.4Cu59.6 due to the partial amorphous structure. Moreover, the pop-in effects with a smaller size occurs of the Mg23.5Cu76.5 sample in a higher frequency than of the Mg17.7Cu82.3 and Mg40.4Cu59.6 samples. The small pop-in effects in the Mg23.5Cu76.5 sample approximate match the width of amorphous matrix via the HRTEM observation.

Another process to form the amorphous thin film is via the post isothermal annealing process of the multilayered thin films. However, for the specimens of 20T32 consisting of 150-nm Mg and 50-nm Cu individual layers, the Mg individual layers would react to the Cu individual layers during the annealing at a temperature of 413 K owning to the slight negative heat of mixing. Due to the localized diffusion near the interfaces, Mg2Cu gradually form during the isothermal annealing since Mg2Cu is the most stable phase below 548 K [62]. Localized interdiffusion near the interfaces between Mg and Cu individual layers induced the formation of Mg2Cu rapidly. For the 40T32 specimens consisting of 15 nm Mg and 5 nm Cu individual layers, Mg2Cu rapidly form at 413 K due to the high interface energy. Then, the similar result exhibits in the 20T14 and 40T14 specimens annealed at 363 K.
目次 Table of Contents
Content ....................................................................................................................................... i
Tables List ................................................................................................................................ iv
Figures List ............................................................................................................................... vi
Abstract ................................................................................................................................... xii
Chapter 1 Introduction ............................................................................................................ 1
1-1 Amorphous metallic alloys ..................................................................................... 1
1-2 Characteristics of bulk metallic glasses (BMGs) and thin film metallic glass
(TFMGs) ................................................................................................................ 2
1-3 The development of Mg-based thin film ................................................................ 5
1-4 The propose and motive of this research ................................................................ 6
Chapter 2 Background and Literature Review ........................................................................ 8
2-1 Evolution of amorphous alloys ............................................................................... 8
2-2 Systems of amorphous alloys ............................................................................... 11
2-3 Evolution of fabrication methods for amorphous alloys ...................................... 13
2-4 Glass-forming ability (GFA) ................................................................................ 15
2-5 Theory and phenomena of sputter deposition process.......................................... 17
2-5-1 Introduction of sputtering ........................................................................ 17
2-5-2 Systems of sputter deposition process ..................................................... 19
2-5-3 Thin film growth mechanism .................................................................. 21
2-5-4 Zone model for sputtered coatings .......................................................... 25
2-6 Fabrication of TFMGs .......................................................................................... 26
2-7 Properties of thin film metallic glass .................................................................... 30
2-7-1 Thermal properties ................................................................................... 30
ii
2-7-2 Mechanical properties .............................................................................. 31
2-7-3 Electric and magnetic properties .............................................................. 34
Chapter 3 Experimental Procedures ...................................................................................... 35
3-1 Materials ............................................................................................................... 35
3-2 Sample preparation ............................................................................................... 35
3-2-1 Substrate preparation ............................................................................... 35
3-2-2 Film preparation ....................................................................................... 36
3-2-3 Post-deposition treatments ....................................................................... 38
3-3 Property measurements and analyses ................................................................... 39
3-3-1 X-ray diffraction ...................................................................................... 39
3-3-2 Preparation of TEM specimens of co-sputtered and multilayered thin
films ......................................................................................................... 40
3-3-2 Qualitative and quantitative constituent analysis ..................................... 41
3-3-3 Thermal analysis using differential scanning calorimetry (DSC) ............ 41
3-3-4 Nano-mechanical analysis using nanoindenter ........................................ 41
Chapter 4 Results ................................................................................................................... 43
4-1 EDS analysis of co-sputtered Mg-Cu thin films ................................................... 43
4-2 X-ray diffraction analyses .................................................................................... 43
4-3 TEM observation of co-sputtered Mg-Cu thin films ............................................ 45
4-3-1 Microstructure of co-sputtered 100-150 (Mg17.7Cu82.3) and 100-100
(Mg23.5Cu76.5) thin films ........................................................................... 45
4-3-2 High-resolution TEM observation of co-sputtered 100-100 thin films ... 46
4-4 Thermal analysis ................................................................................................... 46
4-4-1 DSC analysis of Mg-Cu co-sputtered thin films ...................................... 46
4-4-2 Structural transformation of the 100 series thin films at 423 K ............... 47
4-4-3 Formation of intermediate phase of Mg-Cu multilayered thin films at 413
iii
K and 363 K ............................................................................................. 48
4-4-4 Structural transformation of 20T32 by TEM observation ....................... 50
4-5 Mechanical analysis of co-sputtered 100-150 (Mg17.7Cu82.3), 100-100
(Mg23.5Cu76.5), and 100-50 (Mg40.4Cu59.6) using nanoindenter ............................ 50
Chapter 5 Discussion ............................................................................................................. 52
5-1 Composition shift due to different powers ........................................................... 52
5-2 Oxidation of Mg-Cu co-sputtered film ................................................................ 55
5-3 Diffusion-induced phase transformation in multilayered thin films .................... 56
5-4 Comparison between Mg-rich and Cu-rich amorphous alloy fabricated by
sputtering and liquid-quenching process ............................................................. 59
5-5 Nano-mechanical properties of 100-150 (Mg17.7Cu82.3), 100-100 (Mg23.5Cu76.5),
and 100-50 (Mg40.4Cu59.6) .................................................................................... 62
Chapter 6 Conclusion ............................................................................................................ 66
References ............................................................................................................................... 68
Tables ...................................................................................................................................... 73
Figures..................................................................................................................................... 90
參考文獻 References
[1] A.C. Lund, and C.A. Schuh, J. Appl. Phys., 2004, 95, 4815-4822
[2] A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mater. Trans., JIM, 1991, 32,
606-609
[3] J. Schroers, and N. Paton, Adv. Mater. Processes, 2006, 61-63
[4] P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, Nanoscience and Nanotech.,
2005, 5, 416-420
[5] T. Fukushige, S. Hata, and A. Shimokohbe, J. Microelectromech. Syst., 2005, 14,
243-253
[6] A. Inoue, Mater. Sci. Eng. A, 2001, 304-306, 1-10
[7] A. Inoue, Acta Metar., 2000, 48, 279-306
[8] F.W. Zhu, Z.G. Zhai, and G.H. Yu, J. Univ. Sci. Technol. Beijing, 2003, 10, 1-8
[9] S. Bysakh, P.K. Das, and K. Chattopadhyay, Philos. Mag. A, 2001, 81, 2689-2704
[10] R.B. Schwarz, and W.L. Johnson, Phys. Rev. Lett., 1983, 51, 415-418
[11] S. Hata, K. Sato, and A. Shimokohbe, Proc. SPIE, 1999, 3892, 97-108
[12] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, and C.H. Kuo,
Phys. Rev. B, 2004, 69, 1333410-1 - 113410-4
[13] Y. Liu, S. Hata, K. Wada, and A. Shimokohbe, Jpn. J. Appl. Phys., 2001, 40, 5382-5388
[14] A. Paesano, E.Y. Honda, M.A. Rocha, J.B.M.d. Cunha, and B. Hallouche, Thin Solid
Films, 2004, 458, 165-172
[15] E. Magni, and G.A. Somorjai, Appl. Surf. Sci., 1995, 89, 187-195
[16] W.J. DeSisto, and R.L. Henry, J. Cryst. Growth, 1991, 109, 314-317
[17] T.J. Zhu, L. Lu, and X.B. Zhao, Mater. Sci. Eng., B, 2006, 129, 96-99
69
[18] C.B. Eom, M.K. Lee, J.H. Choi, L. Belenky, X. Song, L.D. Cooley, M.T. Naus, S.
Patnaik, J. Jiang, M. Rikel, A. Polyanskii, A. Gurevich, X.Y. Cai, S.D. Bu, S.E. Babcock,
E.E. Hellstrom, D.C. Larbalestier, N. Rogado, K.A. Regan, M.A. Hayward, T. He, J.S.
Slusky, I. K, M.K. Haas, and R.J. Cava, Nature, 2001, 411, 558-660
[19] Y. Harada, T. Takahashi, H. Iriuda, M. Kuroha, Y. Nakanishi, and M. Yoshuzawa,
Physica C, 2005, 426-431, 1453-1458
[20] K. Higuchi, H. Kajioka, K. Toiyama, H. Fujii, S. Orimo, and Y. Kikuchi, J. Alloys
Compd., 1999, 293~295, 484-489
[21] K. Higuchi, K. Yamamoto, H. Kajioka, K. Toiyama, M. Honda, S. Orimo, and H. Fujii, J.
Alloys Compd., 2002, 330~332, 526-530
[22] B. Darriet, M. Pezat, A. Hbika, and P. Hagenmulifr, Int. J. Hydrogen Energy, 1979, 5,
173-178
[23] P. Selvam, B. Viswanathan, C.S. Swamy, and V. Srinivasan, Int. J. Hydrogen Energy,
1985, 11, 169-192
[24] W. Klement, R.H. Willens, and P. Duwez, Nature, 1960, 187, 869-870
[25] H.S. Chen, and D. Turnbull, Acta Metar., 1969, 17, 1021-1031
[26] H.S. Chen, Acta Metar., 1974, 22, 1050-1511
[27] E.J. Cotts, W.J. Meng, and W.L. Johnson, Phys. Rev. Lett., 1986, 57, 2295-2298
[28] H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett., 1984, 45, 615-616
[29] Q.M. Chen, Y.D. Fan, and H.D. Li, Mater. Lett. , 1988, 6, 311-315
[30] J. Dudonis, R. Brucas, and A. Miniotas, Thin Solid Films, 1996, 275, 164-167
[31] J. Sakurai, S. Hata, and A. Shimokohbe, International Conference on Advanced
Technology in Experimental Mechanics 2003, 2003, 10-12
[32] G.P. Zhang, Y. Liu, W. Wang, and J. Tan, Appl. Phys. Lett., 2006, 88, 013105-1 -
013105-3
[33] G.P. Zhang, Y. Liu, and B. Zhang, Scripta Mater., 2006, 54, 897-901
70
[34] R. Yamauchu, S. Hata, J. Sakurai, and A. Shimokohbe, Mater. Res. Soc, Symp. Proc.,
2006, 894, 0894-LL02-05.1-0894-LL02-05.5
[35] S. Hata, T. Fukushige, and A. Shimokohbe, Proceedings of CPT2002, 2002, 162-167
[36] G.P. Zhang, Y. Liu, and B. Zhang, Adv. Eng. Mater., 2005, 7, 606-609
[37] A. Blatter, and M.V. Allmen, Phys. Rev. Lett., 1985, 54, 2103-2106
[38] H. Hahn, and R.S. Averback, Phys. Rev. B, 1988, 37, 6533-6535
[39] S.B. Newcomb, and K.N. Tu, Appl. Phys. Lett., 1986, 48, 1436-1438
[40] B.X. Liu, Mater. Lett., 1987, 5, 322-327
[41] Z.Z. Tang, J.H. Hsieh, S.Y. Zhang, C. Li, and Y.Q. Fu, Surf. Coat. Technol., 2005, 198,
110-113
[42] P.F. Ladwig, and Y.A. Chang, J. Appl. Phys., 2003, 94, 979-987
[43] 吳學陞, 工業材料, 1999, 149, 154-165
[44] W. Buckel, Z. Phys., 1954, 138, 136
[45] A. Inoue, T. Nakamura, and N. Nishiyama, Mater. Trans., JIM, 1992, 33, 937-945
[46] Z.P. Lu, H. Tan, Y. Li, and S.C. Ng, Scripta Mater., 2000, 42, 667-673
[47] Z.P. Lu, and C.T. Liu, Acta Metar., 2002, 50, 3501-3512
[48] A. Inoue, T. Zhang, and Tsuyoshi, Mater. Trans., JIM, 1989, 30, 965-972
[49] Z.P. Lu, and C.T. Liu, Intermetallics, 2004, 12, 1035-1043
[50] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, 2002
[51] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 1998
[52] K. Wasa, and S. Hayakawa, Handbook of Sputter Deposition Technology, 1992
[53] W. Zou, Synthesis of Giant Magnetoresistive Multilayers, 2001
[54] M. Ohring, The Material Science of Thin Films, 1992
[55] S. Hata, J. Sakurai, and A. Shimokohbe, MEMS, 18th IEEE International Conference,
2005, 479-482
[56] G.S. Chen, and S.T. Chen, J. Appl. Phys., 2000, 87, 8473-8482
71
[57] L. Ding, P.F. Ladwig, X.Y. Yan, and Y.A. Chang, Appl. Phys. Lett., 2002, 80, 1186-1188
[58] H. Bakker, G.F. Zhou, and H. Yang, Prog. Mater. Sci., 1995, 39, 159-241
[59] P.J. Hsieh, J.C. Huang, Y.P. Hung, S.I. Chou, and J.S.C. Jang, Mater. Chem. Phys., 2004,
88, 364-376
[60] G.Y. Yuan, K. Amiya, and A. Inoue, J. Non-Cryst. Solids, 2005, 351, 729-735
[61] J.P. Chu, and C.T. Lo, Appl. Phys. Lett., 2006, 88, 1-3
[62] B. Arcot, S.P. Murarka, L.A. Clevenger, Q.Z. Hong, W. Ziegler, and J.M.E. Harper, J.
Appl. Phys., 1994, 76, 5161-5170
[63] J. Rodriguez-Viejo, M. Gonzalez-Silvera, and M.T. Clavaguera-Mora, J. Appl. Phys.,
2003, 93, 4447-4453
[64] W.C. Oliver, and G.M. Pharr, J. Mater. Res., 1992, 7, 1564-1583
[65] H. Somekawa, T.G. Neih, and K. Higashi, Scripta Mater., 2004, 50, 1361-1365
[66] X.Y. Chou, Z.D. Jiang, H.R. Wang, and Q. Zhu, J. Phys. Conf. Ser., 2006, 48, 1096-1101
[67] R. Steiner, H.-G. Boyen, M. Krieger, A. Plettl, P. Widmayer, P. Ziemann, F. Banhat, R.
Kilper, and P. Oelhafen, Appl. Phys. A, 2003, 76, 5-13
[68] Q.Z. Hong, and F.M. d'Heurle, J. Appl. Phys., 1992, 72, 4036-4040
[69] M. Gonzalez-Silveira, J. Rodriguez-Viejo, G. Garcia, F. Pi, F.J. Ager, J.L. Labar, A.
Barna, M. Menyhard, and L. Kotis, J. Appl. Phys., 2006, 100, 113522-1 - 113522-9
[70] R.H. Detendler, J.A. Kovacs, and J.A. Alonso, J. Mater. Sci., 1992, 27, 4935-4939
[71] A.T.W. Kenpen, H. Nitsche, F. sommer, and E.J. Mittemeijer, Metall. Mater. Trans. A,
2002, 33A, 1041-1050
[72] M.S. Ong, Y. Li, D.J. Blackwood, and S.C. Ng, Mater. Sci. Eng. A, 2001, 304-306,
510-514
[73] M. Kaya, and R.W. Smith, J. Mater. Sci, 1992, 27, 2258-2266
[74] Z. Kovacs, A. Castelero, A.L.Greer, J. Lendvai, and M. Baricco, Mater. Sci. Eng. A,
2004, 387-389, 1012-1017
72
[75] D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma, Appl. Phys. Let., 2004, 84,
4029-4031
[76] H. Men, W.T. Kim, and D.H. Kim, J. Non-cryst. Alloys, 2004, 337, 29-35
[77] L. Charleux, S. Gravier, M. Verdier, M. Fivel, and J.J. Blandin, J. Mater. Res., 2007, 22,
525-532
[78] A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, and J.R. Wilde, Mater. Sci. Eng. A,
2004, 375-377, 1182-1185
[79] A. Castellero, S.J. Lloyd, S.V. Madge, Z. Kovacs, J.F. Loffler, M. Baroccp, and A.L.
Greer, J. Alloys Compd., 2007, 434-435, 48-51
[80] A. Concustell, G. Alcala, S. Mato, T.G. Woodcock, A. Gebert, J. Eckert, and M.D. Baro,
Intermetallics, 2005, 13, 1214-1219
[81] J.H. Zhao, Y. Du, M. Morgen, and P.S. Ho, J. Appl. Phys., 2000, 87, 1575-1577
[82] X. Deng, C. Cleveland, T. Karcher, M. Koopman, N. Chawla, and K.K. Chawla, J. Mater.
Eng. Perform., 2005, 14, 417-423
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code