Responsive image
博碩士論文 etd-0710108-154048 詳細資訊
Title page for etd-0710108-154048
論文名稱
Title
金基塊狀非晶質合金機械性質與微成形能力之探討
Mechanical Properties and Micro-Forming Ability of Au-Based Bulk Metallic Glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-04
繳交日期
Date of Submission
2008-07-10
關鍵字
Keywords
非晶質、金基、熱機性質、壓印
Au-based BMG, amorphous, mechanical properties
統計
Statistics
本論文已被瀏覽 5698 次,被下載 712
The thesis/dissertation has been browsed 5698 times, has been downloaded 712 times.
中文摘要
本實驗為金基塊狀非晶質合金之機械性質及微成形能力之研究。Au49Ag5.5Pd2.3Cu26.9Si16.3合金經由傳統的銅模鑄造方式能夠成功的製作出直徑2和3 mm的棒材,藉由穿透式電子顯微鏡的觀察,發現其中絕大部分是非晶質,但有些許結晶相分佈在其中。

在熱性質方面,Au49Ag5.5Pd2.3Cu26.9Si16.3非晶質合金顯示出寬的過冷液體區間,顯示其有良好的熱穩定性,另外,根據非晶質合金玻璃形成能力的參考指標,其結果顯示Au49Ag5.5Pd2.3Cu26.9Si16.3據有良好的玻璃形成能力。

機械性質測試上,以Au49Ag5.5Pd2.3Cu26.9Si16.3 塊狀非晶質合金棒材不同形變速率進行壓縮測試。為了瞭解尺寸大小對材料機械性質的影響,直徑3.8微米和1微米的試片由聚焦離子束製作,試片經由不同形變速率進行測試,和巨觀直徑2 mm 的棒材做比較,發現小尺寸的試片具有顯著的延展性,此外,經由外觀形貌觀察,發現當試片大小和形變速率的增加,剪切帶數量也會隨之增加。

藉由熱機械分析儀(TMA)的量測,在熱機性質方面得知在做壓印測試時,攝氏177度是其理想的工作溫度,為探討其成行能力,不同的壓力和壓延時間分別進行測試,發現較高的壓力和壓延時間,可獲得較佳的成形能力。金基塊狀非晶質合金優異的抗氧化和成形能力,讓其成為理想的微機電材料。
Abstract
The mechanical properties and micro-forming of the Au-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glasses with different diameters 2 and 3 mm were successfully fabricated by conventional copper mold casting in an inert atmosphere. By the observation of transmission electron microscopy diffraction pattern, there are crystalline phases among the amorphous matrix phase.

The Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass shows the high glass forming ability and good thermal stability. By the Differential scanning calorimetry (DSC) results, the values ofΔΤx and ΔΤm are 50 and 21 K. And Trg, γ, and γm values for the Au49Ag5.5Pd2.3Cu26.9Si16.3
bulk metallic glass (BMG) at the heating rate of 0.67 K/s are 0.619, 0.430 and 0.774,
respectively.
The mechanical properties of Au49Ag5.5Pd2.3Cu26.9Si16.3 in terms of compression testing
are examined using an Instron 5582 universal testing machine. Room temperature
compression tests are conducted on specimens with various strain rates. To know the size
effect, the micro-pillars were made by using a focus ion beam (FIB) technique. The
micro-pillars were under the tests of compression at different strain rates, compared with
macro-scale 2 mm rod specimens. In contrast to the brittle fracture in a bulk sample, these
micro-pillar specimens show significant plasticity. The morphology of compressed pillar
samples indicates that the number of shear bands increased with the sample size and strain rates.
目次 Table of Contents
Content…………………………………………………………………………………………i
Tables List………………………………………………………………………………….....iv
Figures List……………………………………………………………………………………v
Abstract……………………………………………………………………………….…….....xi
Chapter 1 Introduction 1
1.1 Amorphous metallic alloys 1
1.2 The evolution of Au-based amorphous alloys 1
1.3 The motivation of this research 2
Chapter 2 Background and literature review 4
2.1 The developments of bulk metallic glasses (BMGs) 4
2.2 Thermal stability and glass forming ability of BMGs 6
2.3 Mechanical behavior of amorphous metallic alloys 9
2.3.1 Deformation mechanisms 9
2.3.2 Shear bands 13
2.3.3 Size effects in plasticity 15
2.4 Comparison between metallic glasses and engineering materials 16
2.5 The birth of Au-based BMG (Au49Ag5.5Pd2.3Cu26.9Si16.3) 18
2.6 The parameters to distinguish plasticity or brittleness 20
2.7 Applications of bulk metallic glasses 21
2.7.1 Golf club heads 21
2.7.2 Cases for consumer electronics 22
2.7.3 Liquidmetal rebounds 23
2.7.4 Medical applications 23
2.7.5 Defense and aerospace 24
2.8 Viscous flow behavior 24
Chapter 3 Experimental procedures 26
3.1 Materials 26
3.2 Sample preparation 26
3.2.1 Arc melting 26
3.2.2 Suction casting 27
3.2.3 Micro-sample fabrication using Focused Ion Beam milling 27
3.3 Property measurements and analyses 28
3.3.1 X-ray diffraction 28
3.3.2 Qualitative and Quantitative constituent analysis 28
3.3.3 DSC thermal analysis 28
3.3.4 Density measurement 29
3.3.5 TMA analysis 29
3.3.6 Micro-hardness testing 30
3.3.7 Macro-compression testing 30
3.3.8 Micro-compression testing 30
3.3.9 Microstructure examination 31
3.3.10 Hot embossing of micro-lens and V-groove 31
3.3.11 Surface morphologies 32
Chapter 4 Results 33
4.1 Sample preparations 33
4.2 XRD analyses 33
4.3 SEM/EDS observations 33
4.4 TEM observations 33
4.5 DSC analyses 34
4.6 Density measurement 34
4.7 Micro-hardness testing 35
4.8 Macro-compression testing 35
4.9 Compressive fracture characteristics 36
4.10 Micro-compression testing 37
4.11 TMA Analysis 38
4.12 Hot embossing of V-groove on Au-based BMG 39
4.13 Hot embossing of micro-lens array on Au-based BMG 40
Chapter 5 Discussions 42
5.1 Variation in compositions of Au-based BMG 42
5.2 The glass forming ability of Au-based BMG 42
5.3 Bulk and micro-scale compressive behavior of Au-based BMG 43
5.4 Viscous flow behavior for Au-based BMG 45
5.5 Hot embossing on Au-based BMG 47
Chapter 6 Conclusions 50
References……………………………………………………………………………………52
Tables………………………………………………………………………………………...56
Figures………………………………………………………………………………………..57
參考文獻 References
[1] Turnbull D, Cech RE. J Appl Phys 1950;21:804.
[2] Clement W, Williens RH, Duwez P. Nature 1960;187.
[3] Chen HS, Turnbulll D. Appl Phys Lett 1967;10:284.
[4] Chen HS, Krause JT, Coleman E. J Non-Cryst Soilds 1975;18:157.
[5] Kui HW, Greer AL, Turbull D. Appl Phys Lett 1984;45:615.
[6] Lu ZP, Liu CT, Thompson JR, Porter WD. Phys Rev Lett 2004;92:245503.
[7] Schoroers J, Johnson WL. Appl Phys Lett 2004;84:3666.
[8] Ponnambalam V, Poon SJ, Shiflet G. J. Appl Phys Lett 2003;83:1131.
[9] Schroers J, Lohwongwatana B, Johnson WL, Peker A. Appl Phys Lett 2005;87:061912.
[10] Volkertt CA, Lilleodden ET. Phil Mag 2005;86:33.
[11] Greer JR, Nix WD. Appl Phys A 2005;80:1625.
[12] Greer AL. Science 1995;267:1947.
[13] Johnson WL. Prog Mater Sci 1986;30:81.
[14] Daveis HA, Luborsky FE. Amorphous Metallic Alloys Butterworths London 1983;8.
[15] Kavesh S, Gillman JJ, Leamy HL. Metallic Glasses ASM International Metals Park OH 1978.
[16] Chen HS. Acta Metall 1974;22:1505.
[17] Drehman AL, Greer AL, Turnbull D. Appl Phys Lett 1982;41:716.
[18] Kui WH, Greer AL, Turnbull D. Appl Phys Lett 1984;45:615.
[19] Telford M. Materials today 2004;7:36.
[20] Inoue A, Ohtera K, Kita K, Masumoto T. Japanese J Appl Phys 1988;27: L2248.
[21] Inoue A, Zhang T, Masumoto T. Mater Trans JIM 1990;31:177.
[22] Inoue A, Johnson WL. Appl Phys Lett 1993;63:2342.
[23] Inoue A, Gook JS. Mater Trans JIM 1995;36:1180.
[24] Inoue A, Zhang T, Itoi T, Takeuchi. A. Mater Trans JIM 1997;38.
[25] Inoue A, N. Nishiyama, and T. Matsuda, Mater Trans JIM 1996; 37.
[26] Inoue A, Mater Trans JIM 1998;39:1001.
[27] Zhang T, Inoue A Mater JIM 1999;40:301.
[28] Inoue A, Mater Trans JIM 1989;3:965.
[29] Inoue A, Mater Trans JIM 1991;32:609.
[30] Inoue A. Mater Trans JIM 1993;34:1234.
[31] Wang WH, Dong C, Shek CH. Mater Sci Eng 2004;44:45
[32] Inoue A. Mater Trans JIM 1995;36:866.
[33] Inoue A, Mater Sci Eng 1997;226:357.
[34] Inoue A, Zhang T, Takeuchi A. Mater Sci Forum 1998;269:855.
[35] Inoue A, Takeuchi A, T. Zhang. Metall Mater Trans 1998;29:1779.
[36] Inoue A, Bulk Amorphous Alloys Trans Tech Publications Zurich 1998.
[37] Inoue A, Nishiyama N. Mater Sci Eng 1997;226:401.
[38] Chen HS, Miller CE. Rev Sci Instrum 1970;41:1237.
[39] Lu ZP, Liu CT. Acta Mater 2002;50:3501.
[40] Lu ZP, Liu CT. Phys Rev Lett 2003;91:115505.
[41] Du XH, Hunag JC, Liu CT, Lu ZP. Appl Phys Lett 2007;101:086108.
[42] Johnson WL. MRS Bull 1999;24:42.
[43] Argon AS, Kuo HY. Mater Sci Eng 1979;39:101.
[44] Srolovitz D, Vitek V, Egami T. Acta Metall Mater 1983;31:335.
[45] Falk ML. Phys Rev B 1999;60:7062.
[46] Bulatov VV, Argon AS. Model Sim Mater Sci Eng 1994;2:167.
[47] Bulatov VV, Argon AS. Model Sim Mater Sci Eng 1994;2:185.
[48] Bulatov VV, Argon AS. Model Sim Mater Sci Eng 1994;2:203.
[49] Falk ML, Langer JS. Phys Rev E 1998;57:7192.
[50] Argon AS, Shi LT, Phil Mag A 1982;46:275.
[51] Yamamoto R, Matsuoka H, Doyama M. Phys Status Solidi A. 1979;163
[52] Spaepen F. Acta Metall 1977;25:407.
[53] Argon AS. Acta Metall 1979;27:47.
[54] Cohen MH and Turnbull DJ. Chem Phys 1959;31:1164.
[55] Polk DE, Turnbull D. Acta Metall 1972;20:493.
[56] Shi FG, Nieh TG, Chou YT. Scripta Mater 2000;43:265.
[57] Gilman JJ. J Appl Phys 1975;46:1625.
[58] Li, JCM. Micromechanisms of deformation and fracture In: Metallic glasses. Materials Park, OH: American Society for Metals;1978 [Chapter 9].
[59] Kimura H, Masumoto. Acta Metall 1983;31:231.
[60] Steif PS, Spaepen F, Hutchinson JW. Acta Metall 1982;30:447.
[61] Schuh CA, Nieh TG. J Mater Res 2004;19:46.
[62] Schuh CA, Argon AS, Nieh TG, Wadsworth J. Phil Mag A 2003;83:2585.
[63] Conner RD, Johnson WL, Paton NE, Nix WD. J Appl Phys 2003;94:904.
[64] Pampillo CA, Chen HS. Mater Sci Eng 1974;13:181.
[65] Hufnagel TC, Deiry PE, Vinci RP. Scripta Mater 2000;43:1071.
[66] Moser B, Kuebler J, Meinhard H, Muster W, Michler J. Adv Eng Mater 2005;7:388.
[67] Conner RD, Li Y, Nix WD, Johnson WL. Acta Mater 2004;52:2429.
[68] Davis LA. Metallic Glasses Metals Park OH ASM 1978:191.
[69] Ashby MF, Greer AL. Scripta Mater 2006:54;321.
[70] Cambridge Materials Selector (software), Granta Design Ltd, Cambridge, UK.
[71] Inoue A, Shen BL, Koshiba H, Kato H, Yavari AR. Nature Mater 2003;2:661.
[72] Lewandowski JJ, Wang WH, Greer AL. Phil Mag Lett 2005;85:77.
[73] Xing LQ, Li Y, Ramesh KT, Li J, Hufnagel TC. Phys Rev B 2001;64:180201.
[74] Chen HS, Turnbull D. Appl Phys Lett 1967;10:284.
[75] Chen HS, Turnbull D. J Chem Phys 1968;48:2560.
[76] Lewandowski JJ, Wang WH, Greer AL. Phil Mag Lett 2005;85:77.
[77] Schroers J, Johnson WL. Phys Rev Lett 2004;93:255506.
[78] Busch R, Bakke E, Johnson WL. Acta Mater 1998;46:4725.
[79] Kawamura Y, Inoue A. Mater Sci Forum 1999; 4:373.
[80] Busch R, Bakke E, Johnson WL. Acta Mater 1998;46:4725.
[81] Busch R, Liu W, Johnson WL. J. Appl Phys 1998;83:4134.
[82] Chen HS. J Non-Cryst Solids 1978;27:257.
[83] Fan GJ, Fecht HJ, Lavernia E. J Appl Phys Lett 2004;84:487.
[84] Kawamura Y, Nakamura T, Inoue A, Masumoto T. Mater Trans JIM 1999;40:74.
[85] Yamasaki T, Tatibana T, Ogino Y, Inoue A. Mater Res Soc Symp Proc 1999;554:63.
[86] Stefan MJ. Akad Wiss Wien Math-Nat Klasse Abt 2 1874;69:713.
[87] Michael, Uchick D, Dennis, Dimiduk M. Mater Sci Eng 2005;268:400.
[88] Pan CT, Wu TT, Chen MF, Chang YC, Lee CJ, Huang JC. Sensor and Actuators 2008;141:422
[89] Zheng Q, Xu J, Ma E. J. Appl Phys 2007;102:113519.
[90] Schuster BE, Wei Q, Ervin MH, Hruszkewycz SO, Miller. Scripta Mater 2007;57:517.
[91] Wu WF, Li Y.S. Phil Mag 2008;88:71.
[92] Lee CJ, Huang JC, Nieh TG. Appl Phys Lett 2007;91:161913.
[93] Weibull WJ. J Appl Mech 1951;18:293.
[94] Askeland DR. Science and Engineering of Materials PWS Publishing Boston 1994:152.
[95] Spaepen F. Acta Metall 1976;25:407
[96] Yang B, Wadsworth J, Nieh TG. Appl Phy Lett 2007;90:061911.
[97] Argon AS, Shi LT. Acta Metall 1983;31:499.
[98] Kato H, Wada T, Hasegawa M, Saida J, Inoue A, Chen HS. Scripta Mater 2006;54:2023.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code