Responsive image
博碩士論文 etd-0710108-171128 詳細資訊
Title page for etd-0710108-171128
論文名稱
Title
多元鎂基非晶質金屬玻璃熱機性質與熱可塑功能性之研究
Study on the thermomechanical properties and workability of Mg-based bulk metallic glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
190
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-04
繳交日期
Date of Submission
2008-07-10
關鍵字
Keywords
有限元素分析、形變模型、壓印、加工性、功能性、熱可塑、熱機性質、非晶質、鎂基
finite element simulation, deformation model, imprint, microforming, deforming, viscosity, workability, thermomechanical, metallic glass, amorphous, magnesium
統計
Statistics
本論文已被瀏覽 5635 次,被下載 1092
The thesis/dissertation has been browsed 5635 times, has been downloaded 1092 times.
中文摘要
  近年來,非晶質合金之未來潛力與實質工業應用開始被多加關注,尤其微機電系統(MEMS)零組件與光電壓印材料方面,更是投注大量的人才來研發。本論文主要以具低玻璃轉位溫度(Tg)之輕量型鎂基非質晶合金,作為新一代的壓印材料之研究。且利用熱機性分析儀(Thermomechanical analyzer)來獲得鎂基非晶質合金之粘度行為與熱機性參數,並進而探討其二次加工性,提出加工溫度區間、耐熱程度等實用之數據,作為日後工業應用之有利資訊。
  輕量型鎂基非晶質合金具良好之玻璃形成能力(Glass forming ability),根據鎂基非晶質合金之發展歷程,與熱分析所得之結果,顯示鎂-銅-釔(Mg-Cu-Y)與鎂-銅-釓(Mg-Cu-Gd)之金屬成分是易於製成塊狀鎂基非晶質金屬玻璃(Bulk metallic glass)。本文先以鎂-銅-釔作主軸,藉由熱分析與硬度結果作為依據,獲取最適合之塊狀非晶質合金成分(Mg58Cu31Y11)作為熱壓印材料樣本。樣本經由熱壓印機施予適當應力與時間之下,以幾近完美地形成六角鏡模具,且成功轉印於聚甲基丙烯酸甲酯(Polymethylmethacrylate)之上。有限元素分析法(Finite element simulation)之結果,也與熱機性分析、壓印試片相互印證。
  此外,鎂-銅-釓之金屬成分更較鎂-銅-釔具良好玻璃形成能力,據相關文獻所言,若以少量銀(Silver)或硼(Boron)元素取代成分鎂-銅-釓(釔)中的銅(Copper)元素原子成分比,將可提升熱穩定性或機械性質,更增加金屬玻璃塊材形成大小,以便加強材料使用性。本論文也探討鎂-銅-(銀,硼)-釓多元鎂基合金之熱機械性質、粘滯流動行為和形變能力等加工性,並利用形變模型來深入探討其內部結構與能量關係之影響。由研究發現,添加銀或硼元素,雖增加塊狀大小、機械性質或熱穩定性,但卻提高粘滯流動困難性、增加活化所需能量、降低形變能力等負面加工性因子,侷限二次形變能力。但銀、硼取代銅元素之玻璃金屬材料確實顯示出較佳之機械性質和室溫下之硬度。由此可知,材料應用性不應只單探討材料之形變能力、熱性質或機械性質,而是需全方面考量其應用所需。
  最後,本論文提出數個指數如粘滯性(Viscosity)、VFT溫度(Vogel-Fulcher-Tammann temperature)、應力下之熱穩定性、形變性(Deformability)等,以量化數據方式,來得知材料之加工性質,作為塊狀玻璃金屬加工性之參考,以便用於未來應用發展之依據。
Abstract
In the near couple years, the applications of amorphous alloys have attracted great attention due to their characteristics and future potential. This research is intended to synthesis a lighter Mg-based amorphous alloy as the imprinting materials for micro-electromechanical system (MEMS) with a high glass forming ability (GFA) and lower glass transition temperature (Tg). Also, the workability of the Mg-based metallic glasses is examined in terms of several viscous flow behaviors and parameters obtained from the thermomechanical analysis (TMA).
The lighter Mg-based metallic glasses exhibit their superior glass forming ability, and can be cast into bulk metallic glasses (BMGs). Based on the thermal analysis of the Mg-Cu-Y glassy materials, the evaluation of the glass forming ability and thermal stability for searching the optimum alloy composition is conducted. By using Mg58Cu31Y11 amorphous alloy with the best composition as the micro-forming specimens, imprinting was made by hot pressing at 150oC with several applied compressive stresses to form the hexagonal micro-lens arrays. Finite element simulation using 3D Deform software is also applied to trace the microforming evolution, and to compare with the experimental observations. The results demonstrate that the imprinting is feasible and promising.
On the other hand, the Mg-Cu-Gd BMGs with even better GFA than Mg-Cu-Y are explored in terms of their thermomechanical properties. Extension of this study is performed partially by Cu replacing by Ag or B for the improvement of maximum diameter and thermal stability. And the workability of these Mg-Cu-(Ag, B)-Gd metallic glasses, namely, Mg65Cu25-xAgxGd10 (x = 0, 3, 10 at %) and Mg65Cu22B3Gd10 is evaluated in terming of the thermomechanical parameters, viscous flow behavior, deformability, and the deformation model. It is found the fragility for viscous deformation would increase with the replacement of Ag or B, leading to the negative factors for the micro-forming and nano-imprinting practices. This conclusion is supported by the many extracted parameters.
Thus, even the B-additive Mg based BMG has much higher hardness and Ag-additive Mg based BMG has the larger maximum rod diameter, they are more difficult to be formed, appearing as a negative factor in the micro-forming or nano-imprinting industry. The base Mg65Cu25Gd10 alloy stilly appears to be more promising than the Ag or B-containing alloys when the viscous forming is under consideration.
目次 Table of Contents
Table of Content
List of Tables
List of Figures
中文摘要
Abstract
Chapter 1 Introduction
1.1 Glass
1.2 Metallic glasses
1.2.1 Evolution of metallic glasses
1.2.2 Manufacture methods of metallic glasses
1.2.3 Factors of the glass forming ability (GFA)
1.2.4 Bulk metallic glasses
1.2.5 Characterizations of bulk metallic glasses
1.2.6 Application of bulk metallic glasses
1.2.7 Workability of bulk metallic glasses
1.3 Mg-based bulk metallic glasses
Chapter 2 Background and literature review
2.1 The forming conditions of amorphous alloys
2.1.1 The empirical rules for forming amorphous alloys
2.1.2 The correlative theories of empirical rules
2.2 Viscous flow behavior
2.2.1 Thermodynamics and kinetics of metallic glasses
2.2.2 Kinetics and viscosity of metallic glasses
2.2.3 Angell plot and Vogel-Fulcher-Tammann (VFT) formula
2.3 Crystallization of supercooled metallic liquids and glasses
2.4 New viscosity measurement of bulk metallic glasses
2.4.1 Three point beam bending method
2.4.2 Dimensional changes method
2.5 Deformability of supercooled liquids
2.5.1 Deformation behavior
2.5.2 Microforming
2.5.3 Deformability parameter
2.5.4 Deformation model
2.6 Partial element replacement in Mg-Cu-Y(Gd) based bulk metallic glasses
2.6.1 The effect of the boron element
2.6.2 The effect of the silver element
2.7 Purpose of this work
Chapter 3 Materials and Experiments
3.1 The preparation of amorphous alloy specimens
3.1.1 Materials
3.1.2 Arc melting process
3.1.3 Melt spinning technique
3.1.4 Injection casting process
3.2 Microstructure and phase identification
3.2.1 XRD analyses
3.2.2 SEM observations
3.3 Thermal analyses
3.4 Mechanical properties
3.4.1 Hardness
3.4.2 Dynamic mechanical analysis
3.4.3 Thermomechanical analysis
3.5 Imprinting (Micro forming)
Chapter 4 Results and discussions
4.1 The Mg-based amorphous ribbons
4.1.1 Microstructure
4.1.2 Thermal properties
4.1.3 Mechanical analyses
4.2 Thermal and thermomechanical properties of Mg58Cu31Y11 bulk amorphous alloy
4.2.1 Microstructure and thermal properties
4.2.2 Thermomechanical properties
4.2.3 Viscous flow behavior
4.2.4 Deformability
4.2.5 Findings for Mg58Cu31Y11 properties
4.3 Micro-imprinting in Mg-Cu-Y metallic glasses
4.3.1 Finite element simulation
4.3.2 Morphology of the micro-lens mold and imprinted specimens
4.3.3 Comments for micro-imprinting
4.4 Workability and thermomechanical properties of Mg-Cu-(Ag, B)-Gd bulk metallic glasses
4.4.1 Phase demonstration and thermal properties
4.4.2 Thermomechanical analysis
4.4.3 Viscous flow behavior
4.4.4 Mechanical formability
4.4.5 Deformation model
4.4.6 Combined effects of B and Ag addition
Chapter 5 Summary
References
Tables
Figures
參考文獻 References
[1] Angell CA. Science 1995;267:1924-1935.
[2] Angell CA, Poole PH, Shao J. Nuovo Cimento 1994;16:993-1025.
[3] Uhlmann DR, Hayes JF, Turnbull D. Phys. Chem. Glasses 1967;8:1-10.
[4] Angell CA, Sare JM, Sare EJ. J. Phys. Chem. 1978;82:2622-2629.
[5] Iben IET, Draunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ, Xie AH, Young RD. Phys. Rev. Lett. 1989;62:1916-1919.
[6] Klement W, Willens RH, Duwez P. Nature 1960;187:869-870.
[7] http://www.liquidmetal.com.
[8] Pryds NH. Mater. Sci. Eng. A 2004 375-377:186-193.
[9] Inoue A. Acta Mater. 2000;48:279-306.
[10] Chen HS, Turnbull D. J. Chem. Phys. 1968;48:2560-2571.
[11] Chen HS, Turnbull D. Acta Metall. 1969;17:1021-1031.
[12] Chen HS, Miller CE. Rev. Sci. Instrum. 1970;41:1237-1238.
[13] Chen HS. Acta Metall. 1974;22:1505-1512.
[14] Chen HS, Krause JT, Coleman E. J. Non-Cryst. Solids 1975;18:157-171.
[15] Drehman AJ, Greer AL. Acta Metall 1984;32:323-332.
[16] Kui HW, Greer AL, Turnbull D. Appl. Phys. Lett. 1984;45 615-616.
[17] Inoue A, Zhang T, Masumoto T. Mater. Trans. JIM 1990;31:425-428.
[18] Inoue A, Nakamura T, Nishiyama N, Masumoto T. Mater. Trans. JIM 1992;33:937-945.
[19] Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Mater. Trans. JIM 1993;34:1234-1237.
[20] Peker A, Johnson WL. Appl. Phys. Lett. 1993;63:2343-2344.
[21] Lin XH, Johnson WL, Rhim WK. Mater. Trans. JIM 1997;38:473-477.
[22] Inoue A, Nishiyama N, Kimura H. Mater. Trans. JIM 1997;38:179-204.
[23] Ma H, Shi LL, Xu J, Li Y, Ma E. Appl. Phys. Lett. 2005;87:181915.
[24] Wang WH, Dong C, Shek CH. Mater. Sci. Eng. R 2005;44:45-89.
[25] Loffler JF. Intermetallics 2003;11:529-540.
[26] Chopra KL, Thin Film Phenomena, McGraw-Hill, New York, 1985.
[27] Hsieh PJ, PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bonding, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2004.
[28] Liu FX, Liaw PK, Wang GY, Chiang CL, Smith DA, Rack PD, Chu JP, Buchanan RA. Intermetallics 2006;14:1014-1018.
[29] Gramt PS. Prog. Mater. Sci. 1995;39:497-545.
[30] Li B, Nordstrom N, Lavernia EJ. Mater. Sci. Eng. R 1997;A237:207-215.
[31] Liu R, Li J, Dong K, Zheng C, Liu H. Mater. Sci. Eng. R 2002;B94:141-148.
[32] Clement W, Willens RH, Duwez P. Nature (London) 1960;187:869-870.
[33] Ohring M, Haldipur A. Rev. Sci. Instrum. 1971;42:530-531.
[34] Pond R, Maddin R. Trans. Met. Soc. AIME 1969;245:2475-2476.
[35] El-Eskandarany MS, Inoue A. Metall. Mater. Trans. A 2002;33:135-143.
[36] Koch CC, Kavin OB, Mckamey CG, Scarbrough JO. Appl. Phys. Lett. 1983;43:1017-1091.
[37] Lee J, Zhou F, Chung KH, Kim NJ, Lavernia EJ. Metall. Mater. Trans. A 2001;32:3109-3115.
[38] Sagel A, Sieber H, Fecht H-J, Perepezko JH. Acta Mater. 1998;46:4233-4241.
[39] Saito Y, Utsunomiya U, Tsuji N, Sakai T. Acta Mater. 1999;47:579-583.
[40] Xing ZP, Kang SB, Kim HW. Metall. Mater. Trans. A 2002;33:1521-1530.
[41] Donald IW, Davies HA. J. Non-Cryst. Solids 1978;30:77-85.
[42] Hruby A. Czech. J. Phys. 1972;22:1187-1193.
[43] Mondal K, Murty BS. J. Non-Cryst. Solids 2005;351:1366-1371.
[44] Saad M, Poulain M. Mater. Sci. Forum 1987;19-20:11-18.
[45] Turnbull D. Contemp. Phys. 1969;10:473-488.
[46] Hung TH, Huang JC, Jang JSC, Lu SC. Mater. Trans. 2007;48:239-243.
[47] Lu ZP, Liu CT, Dong Y. J. Non-Cryst. Solids 2004;341:93-100.
[48] Senkov ON, Miracle DB. Mater. Res. Bull. 2001;36:2183-2198.
[49] Xiao X, Fang S, Wang G, Hua Q, Dong Y. J. Alloys Compd. 2004;376:145-148.
[50] Xiao X, Fang S, Xia L, Li WH, Hua Q, Dong Y. J. Alloys Compd. 2003;351:324-328.
[51] Yan ZJ, Li JF, He SR, Zhou YH. Mater. Res. Bull. 2003;38:681-689.
[52] Egami T. J. Non-Cryst. Solids 1996;205-207:575-582.
[53] Egami T. Mater. Sci. Eng. 1997;A226-228:261-267.
[54] Egami T, Waseda Y. J. Non-Cryst. Solids 1984;64:113-134.
[55] Miracle DB, Senkov ON. J. Non-Cryst. Solids 2004;319:174-191.
[56] Senkov ON, Miracle DB, Mullens HM. J. Appl. Phys. 2005;97:103502.
[57] Azad S, Mandal A, Mandal RK. Mater. Sci. Eng. A, 2007;458:348-354.
[58] Chen W, Wang Y, Qiang J, Dong C. Acta Mater. 2003;51:1899-1907.
[59] Iqbal M, Sun WS, Zhang HF, Akhter JI, Hu ZQ. Mater. Sci. Eng. A, 2007;447:167-173.
[60] Wang Q, Wang YM, Qiang JB, Zhang XF, Shek CH, Dong C. Intermetallics 2004;12:1229-1232.
[61] Wang YM, Shek CH, Qiang JB, Wong CH, Chen WR, Dong C. Scripta Mater. 2003;48:1525-1529.
[62] Wang YM, Xu WP, Qiang JB, Wong CH, Shek CH, Dong C. Mater. Sci. Eng. A, 2004;375-377:411-416.
[63] Cheng YT, MS Thesis, Amorphization and Nanocrystallization Behavior in Mg-Cu-Y Alloy by Adding Boron, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2005.
[64] Inoue A. Acta Mater. 2000;48:279-306.
[65] Lu ZP, Tan H, Li Y, Ng SC. Scripta Mater. 2000;42:667-673.
[66] Murty BS, Hono K. Mater. Trans. JIM 2000;41:1538-1544.
[67] Shen TD, Schwarz RB. Appl. Phys. Lett. 1999;75:49-51.
[68] Waniuk TA, Schroers J, Johnson WL. Appl. Phys. Lett. 2001;78:1213-1215.
[69] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater. 2001;49:2645-2652.
[70] Inoue A, Zhang W, Zhang T, Kurosaka K. J. Mater. Res. 2001;16:2836-2844.
[71] Lu ZP, Liu CT. Acta Mater. 2002;50:3501-3512.
[72] Lu ZP, Liu CT. Intermetallics 2004;12:1035-1043.
[73] Lu ZP, Liu CT. Phys. Rev. Lett. 2003;91:115505.
[74] Du XH, Huang JC, Liu CT, Lu ZP. J. Appl. Phys. 2007;101:086108.
[75] Inoue A. Mater. Sci. Eng. A 2001;304-306:1-10.
[76] Zhang T, Inoue A. Mater. Trans. JIM 1998;39:857-862.
[77] Inoue A, Hashimoto K, Amorphous and Nanocrystalline Materials: Preparation, Properties, and Applications, Springer-Verlag, Berlin and Heidelberg, 2001.
[78] Yokoyama Y, Nishiyama N, Fukaura K, Sunada H, Inoue A. Mater. Trans. JIM 1999;40:696-699.
[79] Yoshizawa Y, Oguma S, Yamauchi K. J. Appl. Phys. 1988;64:6044-6046.
[80] Shen TD, Schwarz RB. Acta Mater. 2001;49:837-847.
[81] Asami K, Inoue A. Mater. Sci. Eng. A 2004;375-377:235-239.
[82] Shoji T, Inoue A. J. Alloys Compd. 1999;292:275-280.
[83] Isogai K, Shoji T, Kimura HM, Inoue A. Mater. Trans. JIM 2000;41:1486-1486.
[84] Telford M. Mater. Today 2004;7:36-43.
[85] Chang YC, Wu TT, Chen MF, Lee CJ, Huang JC, Pan CT. Mater. Sci. Eng. A 2008;in press.
[86] Pan CT, Wu TT, Chang YC, Huang JC. J. Micromech. Microeng. 2008;18:025010-025021.
[87] Pan CT, Wu TT, Chen MF, Chang YC, Lee CJ, Huang JC. Sens. Actuat. A 2008;141:422-431.
[88] Schroers J, Pham Q, Desai A. J. Micro. Elec. Sys. 2007;16:240-247.
[89] Chen HS. J Non-Cryst Solids 1978;27:257-263.
[90] Maddin R, Masumoto T. Mater. Sci. Eng. 1972;9:153-161.
[91] Saitoh K, Tsuda K, Tanaka M, Tsai AP, Inoue A, Masumoto T. Mater. Sci. Eng. A 1994;181-182:805-810.
[92] Masumoto T, Maddin R. Acta Metall. 1971;19:725-741.
[93] Spaepen F, Taub AI, Amorphous Metallic Alloys, ed., Butterworths, London, 1983.
[94] Inoue A, Zhang T, Masumoto T. Mater. Trans. JIM 1990;31:425-428.
[95] Inoue A. Mater. Trans. JIM 1995;36:866-875.
[96] Yuan G, Inoue A. J. Alloys Compd. 2005;387:134-138.
[97] Inoue A, Kato A, Zhang T, Kim SG, Masumoto T. Mater. Trans. JIM 1991;32:609-616.
[98] Chen HM, Chang YC, Hung TH, Du XH, Huang JC, Jang JSC, Liaw PK. Mater. Trans. JIM 2007;48:1802-1805.
[99] Reed-Hill RE, Abbaschian R, Physical Metallurgy Principles, PWS, Boston, USA, 1994.
[100] Inoue A, Takeuchi A, Zhang T. Metall. Mater. Trans. A 1998;29:1779-1793.
[101] Takeuchi A, Inoue A. Mater. Trans. 2000;41:1372-1378.
[102] Fulcher GS. Bull. J. Amer. Cerm. Soc. 1925;8:339-355.
[103] Masuhr A, Waniuk TA, Busch R, Johnson WL. Phys. Rev. Lett. 1999;82:2290-2293.
[104] Shaw T, Way C, Busch R. Mater. Res. Soc. Symp. Proc. 2004;806:215-220.
[105] Wilde G, Gorler GP, Willnecker R, Dietz G. Appl. Phys. Lett. 1994;65:397-399.
[106] Busch R, Liu W, Johnson WL. J. Appl. Phys. 1998;83:4134-4141.
[107] Busch R, Kim YJ, Johnson WL. J. Appl. Phys. 1995;77:4039-4043.
[108] Glade SC, Busch R, Lee DS, Johnson WL. J. Appl. Phys. 2000;87:7242-7248.
[109] Porter DA, Esterling KE, Phase Transformations in Metals and Alloys, Chapman and Hall, 1997.
[110] Ediger MD, Angell CA, Nagel SR. J. Phys. Chem. 1996;100:13200-13212.
[111] Xu D, Lohwongwatana B, Duan G, Johnson WL, Garland C. Acta Mater. 2004;52:2621-2624.
[112] Busch R. J. Metals. 2000;52:39-42.
[113] Stefan MJ. Math Nat. Klasse 1874;69:713-735.
[114] Kato H, Wade T, Hasegawa M, Saida J, Inoue A, Chen HS. Scripta Mater. 2006;54:2023-2027.
[115] Lida T, Guuthrie RIL, The Physical Properties of Liquid Metals, Clarendon, Oxford, 1998.
[116] Bakke E, Busch R, Johnson WL. Appl. Phys. Lett. 1995;67:3260-3262.
[117] Diennes GJ, Klemm HF. J. Appl. Phys. 1946;17:458-471.
[118] Masuhr A, Busch R, Johnson WL. Mater. Sci. Forum 1998;269-272:779-784.
[119] Kelton KF. Solid State Phys. 1991;45:75-90.
[120] Volkert CA, Spaepen F. Acta Metall. 1989;37:1355-1362.
[121] Russew K, Stojanova L, Sommer F. Int. J. Rapid Solidification 1995;8:267-279.
[122] Myung WN, Park KH, Jang DH, Battezzati L, Zhang T, Inoue A, Masumoto T. Mater. Sci. Eng. A 1997;226-228:406-409.
[123] Myung WN, Bae HY, Hwang IS, Kim HG, Nishiyama N, Inoue A. Mater. Sci. Eng. A 2001;304-306:687-690.
[124] Myung WN, Ryu SP, Hwang IS, Kim HG, Zhang T, Inoue A, Greer AL. Mater. Sci. Eng. A 2001;304-306:691-695.
[125] Wanuik TA, Busch R, Masuhr A, Johnson WL. Acta Mater. 1998;46:5229-5236.
[126] Russew K, Stojanova L. Mater. Lett. 1993;17:199-204.
[127] http://www.anasys.co.uk/library/tma1.htm.
[128] Scholorke N, Weiss B, Eckert J, Schutz L. Nanostruct. Mater. 1999;12:127-130.
[129] Myung WN, Hwang IS, Kim HG. J. Koran Phys. Soc. 2002;40:476-479.
[130] Inoue A, Kawamura Y, Shibata T, Sasamori K. Mater. Trans. JIM 1996;37:1337-1341.
[131] Jeong HW, Hata S, Shimokohbe A. Microelec. Mech. Sys. 2003;12:42-52.
[132] Kawamura Y, Shibata T, Inoue A, Masumoto T. Appl. Phys. Lett. 1996;69:1208-1210.
[133] Inoue A, Masumoto T. J. Non-Cryst. Solids 1993;156-158:473-480.
[134] Inoue A, Kawamura Y, Shibata T, Sasamori K. Mater. Trans. JIM 1996;37:1337-1341.
[135] Nishiyama N, Inoue A. Mater. Trans. JIM 1999;40:64-71.
[136] Spaepen F. Acta Metall. 1977;25:407-415.
[137] Argon AS. Acta Metall. 1979;27:47-58.
[138] Yang B, Wadsworth J, Nieh TG. Appl. Phys. Lett. 2007;90:061911.
[139] Park ES, Kang HG, Kim WT, Kim DH. J. Non-Cryst. Solids 2001;279:154-160.
[140] Park ES, Lee JY, Kim DH. J. Mater. Res. 2005;20:2379-2385.
[141] Brandes EA, Brook GB, Smithells Metals Reference Book, 7th ed., Butterworth-Heinemann, Oxford, U.K., 1992.
[142] Miedema AR, de Boer FR, Boom R. Calphad 1977;1:341-359.
[143] Hung TH, MS Thesis, Study of Thermal Properties in Zr-Al-Cu-Ni Amorphous Alloy by Adding Boron and Silicon, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2004.
[144] Nix WD, Gao H. J. Mech. Phys. Solids 1998;46:411-425.
[145] Swadener JG, George EP, Pharr GM. J. Mech. Phys. Solids 2002;50:681-694.
[146] Zheng Q, Xu J, Ma E. J. Appl. Phys. 2007;102:113519.
[147] Myung WN, Bae HY, Hwang IS, Kim HG, Nishiyama N, Inoue A. Mater. Sci. Eng. A 2001;304-306:687.
[148] Chang LJ, Jang JSC, Yang BC, Huang JC. J. Alloys Compd. 2007;434-435:221-224.
[149] Cheng YT, Hung TH, Huang JC, Hsieh PJ, Jang JSC. Mater. Sci. Eng. A 2007;A449-451:501-505.
[150] Cheng YT, Hung TH, Huang JC, Jang JSC, Tsao CYA, Lee PY. Intermetallic 2006;14:866-870.
[151] Inoue A, Nakamura T, Nishiyama N, Masumoto T. Mater. Trans. JIM 1992;33:937-945.
[152] Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Mater. Trans. JIM 1993;34:1234-1237.
[153] Busch R, Bakke E, Johnson WL. Acta Mater. 1998;46:4725-4732.
[154] Chang YC, Huang JC, Cheng YT, Lee CJ, Du XH, Nieh TG. J. Appl. Phys. 2008;103:103521.
[155] Scherer GW. J. Am. Ceram. Soc. 1992;75:1060-1061.
[156] Chen HS, Turnbull D. J. Chem. Phys. 1968;48:2560-2571.
[157] Chen HS, Goldstein M. J. Appl. Phys. 1972;43:1642-1648.
[158] Mahadevan S, Giridhar A, Singh AK. J. Non-Cryst. Solids 1986;88:11-34.
[159] Argon AS, Shi LT. Acta Metall. 1983;31:499-507.
[160] Spaepen F. Scripta Mater. 2006;54:363-367.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code