Responsive image
博碩士論文 etd-0710111-114341 詳細資訊
Title page for etd-0710111-114341
論文名稱
Title
奈米碳管吸附水中含腐植酸及黃酸溶解性有機物之研究
Adsorption of dissolved organic matter (DOM) containing humic and fulvic acid in aqueous solution using carbon nanotubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-14
繳交日期
Date of Submission
2011-07-10
關鍵字
Keywords
奈米碳管、吸附、黃酸、腐植酸、水處理、模式
Adsorption, Water treatment, Humic acid, Carbon nanotubes, Fumic acid, Model
統計
Statistics
本論文已被瀏覽 5669 次,被下載 6
The thesis/dissertation has been browsed 5669 times, has been downloaded 6 times.
中文摘要
飲用水水源(河川、水庫與地下水為主)幾乎都遭受有機物污染,在國內淨水廠(water treatment plant)仍是以傳統處理居多,淨水廠利用加氯法殺菌,目的是控制藻類及微生物之生長,並去除臭、異味、氧化鐵、錳,以確保飲用水品質,但消毒程序則會生成消毒副產物(disinfection by-products,DBPs),如三鹵甲烷(Trihalomethanes,THMs)與鹵化乙酸(Haloaceticacids,HAAs)等,使飲用水的致癌風險明顯增加,對人體健康有負面的影響。本研究利用奈米碳管(Carbon nanotubes, CNTs)和單壁奈米碳管(Single-walled carbon nanotubes,SWCNTs)吸附去除水中腐植酸和原水中含腐植酸及黃酸溶解性有機物以降低有機物質在水處理程序效應,同時減少潛在危害性的有機污染物。
單壁奈米碳管吸附水中溶解性有機物質(dissolved organic matter,DOM)實驗結果顯示,動力吸附約在120 min可達到平衡。動力吸附實驗結果以Modified Freundlich equation相關性最佳,進一步套用Intraparticle Diffusion equation(IPD)模式探討SWCNTs對DOM之吸附行為,顯示吸附行為主要是由孔隙擴散所控制。在DOM濃度為0.5~5.5 mg TOC/L利用Langmuir model求出單壁奈米碳管最大的吸附容量為54.01 mg TOC/g,比其他商業用之活性碳(GAC10.69 mg TOC/g)有較佳的吸附量。在腐植酸初始濃度10~30 mg TOC/L下利用Langmuir model 求出奈米碳管飽和吸附量為121.95 mg TOC/g,比其他商業用之活性碳(PAC 42.37 mg TOC/g)有較佳的吸附量。由實驗顯示在低離子強度、低pH及低溫狀態等條件下,是有利於SWCNTs對DOM之吸附,根據熱力學參數的求取顯示此吸附過程為自發、放熱反應。
實驗結果顯示奈米碳管及單壁奈米碳管在吸附水中含腐植酸及黃酸溶解性有機物過程,有較快速的吸附速率及較高的吸附量,可見奈米碳管作為吸附劑的應用是相當具有潛力的,若能結合奈米碳管技術有效應用於家用飲水處理設施或小型簡易淨水場之飲用水處理單元末端設計,將有助於民眾飲用水安全技術與市場發展機會。
Abstract
Drinkable water sources (mainly including rivers, reservoirs, and groundwater) are almost universally polluted by organic substances. In Taiwan, the majority of water treatment plants ensure high-quality drinking water by using chlorine to control the growth of algae and microorganisms, thereby removing odors, tastes, ferric and manganese irons. However, these processes produce disinfection by-products (DBPs), such as Trihalomethanes (THMs) and Haloacetic acids. These DBPs contained in drinking water increase the risk of cancer in human body. Thus commercial carbon nanotubes (CNTs) were employed as adsorbents to study adsorption of humic acid (HA) and dissolved organic matter (DOM) in raw water.
Experiment results exhibited kinetic adsorption reached equilibrium about 120 minutes,the best selection in kinetic models evaluation, fitting models such as Modified Freundlich equation, Pseudo-1st-order equation and Pesudo-2nd-oder equation, is Modified Freundlch equation model. In addition, intraparticle diffusion equation model was fitted well and showed adsorption process was controlled with pore diffusion.The maximum adsorbed amounts of DOM onto SWCNTs was calculated by the Langmuir model at 25℃, reaching 54.01 mg TOC / g which were much higher than that onto commercially available granular activated carbon (10.69 mg TOC / g).The maximum adsorbed amounts of HA onto CNTs was calculated by the Langmuir model at 25℃, reaching 125.95 mg TOC / g which were much higher than that onto commercially availablepowdered activated carbon (42.37mg TOC / g).A favorable adsorption of single-wall carbon nanotubes was found when high initial concentration of DOM was adsorbed at low ion strength, low pH and low temperature .According to results of thermodynamic parameters indicated that the adsorption was spontaneously and an exothermic reaction.
The short contact time needed to reach equilibrium as well as the high adsorption capacity of DOM suggests that CNTs possess highly potential applications for DOM removal from raw water.In the future, we can combine nanotube technology with disinfection technology and apply such technique on the end of processing unit for design of either the domestic treatment facilities or small simple water treatment in drinking water. Thus our results in this work will enhance the new treatment technology of drinking water and improve the safety of the public health. Another possibility will be to promote the opportunity of marketing development in drinking water.
目次 Table of Contents
目錄
謝誌••••••••••••••••••••••••••••I
摘要••••••••••••••••••••••••••••II
Abstract••••••••••••••••••••••••••IV
目錄•••••••••••••••••••••••••••VI
表目錄•••••••••••••••••••••••••X
圖目錄•••••••••••••• ••••••••••••XI
第一章 緒論•••••••••••••••••••••••1
1.1研究緣起••••••••••••••••• ••••1
1.2研究目的與內容•••••••••••••••••••1
第二章 文獻回顧•••••••••••••••••••••3
2.1水體中有機物的來源及組成••••••••••••••3
2.2 腐植質之性質與結構分析••••••••••••••4
2.3水中天然有機物對於淨水工程之影響••••••••••7
2.3.1 消毒副產物•••••••••••••••••••8
2.4 奈米碳管的材料特性與應用•••••••••••••10
2.4.1 奈米碳管的性質、結構••••••••••••••10
2.4.2 奈米碳管的吸附能力•••••••••••••••13
2.5 吸附理論•••••••••••••••••••••15
2.5.1 物理吸附(Physical adsorption) ••••••• ••••16
2.5.2 化學吸附(Chemical adsorption) ••••• •••••16
2.5.3 特定吸附(specific adsorption)•••••••••••16
2.5.4 非特定吸附(nonspecific adsorption)•••••••••17
2.5.5吸附速率••••••••••••••••••••18
2.5.6 影響吸附能力因子••••••••••••••••19
2.6 等溫吸附模式•••••••••••••••••••21
2.7動力吸附模式••••••••••••••••••••23
第三章 實驗方法與步驟••••••••••••••••••26
3.1實驗流程•••••••••••••••••••••26
3.2實驗材料及設備••••••••••••••••••28
3.2.1 實驗材料••••••••••••••••••28
3.2.2實驗設備••••••••••••••••••29
3.2.3 實驗試劑••••••••••••••••••30
3.3腐植酸溶液配製方法與設備•••••••••••••31
3.4溶解性有機物質製備及前置實驗•••••••••••31
3.4.1萃取溶解性有機物質前置實驗•••••••••31
3.4.2 溶解性有機物質之製備方法••••••••••32
3.5 定量分析••••••••••••••••••••33
3.6奈米碳管之表面特性鑑定方法•••••••••••34
3.6.1掃描式電子顯微鏡(SEM)••••••••••34
3.6.2穿透式電子顯微鏡(TEM)•••••••••••34
3.6.3熱重量分析儀(TGA)•••••••••••••35
3.6.4拉曼光譜(Raman)•••••••••••••35
3.6.5比表面積分析儀(BET)••••••••••••36
3.6.6霍氏轉換紅外線光譜(FTIR)••••••••••36
3.6.7界達電位分析儀(Zeta potential meter)••••••37
3.7奈米碳管吸附實驗•••••••••••••••••37
3.7.1實驗裝置••••••••••••••••••37
3.7.2奈米碳管之吸附容量•••••••••••••37
3.7.3吸附動力實驗••••••••••••••••38
3.7.4等溫吸附平衡實驗••••••••••••••38
3.7.5不同溫度之吸附平衡實驗•••••••••••39
3.7.6不同pH之吸附平衡實驗•••••••••••39
第四章 結果與討論••••••••••••••••••••40
4.1 TOC檢量線製作•••••••••••••••••••40
4.2溶解性有機物定量分析••••••••••••••••40
4.3奈米碳管特性分析••••••••••••••••••41
4.3.1 SEM量測••••••••••••••••••••41
4.3.2 TEM量測••••••••••••••••••••43
4.3.3 孔隙結構••••••••••••••••••••44
4.3.4霍氏轉換紅外線光譜(FTIR) ••••••••••••45
4.3.5 熱重分析(TGA) •••••••••••••••••46
4.3.6界達電位(Zeta potential) ••••••••••••••46
4.4 奈米碳管吸附腐植酸之特性研究•••••••••••47
4.4.1吸附平衡動力實驗••••••••••••••••47
4.4.2等溫吸附實驗••••••••••••••••••48
4.4.3不同pH值對吸附腐植酸的影響•••••••••••49
4.4.4不同溫度下動力吸附實驗之探討••••••••••51
4.4.5吸附動力學之探討••••••••••••••••52
4.4.6不同溫度之吸附平衡實驗••••••••••••54
4.4.7吸附熱力學之探討••••••••••••••••55
4.5 單壁奈米碳管吸附原水中DOM之特性研究•••••••57
4.5.1不同DOM濃度之動力吸附實驗••••••••••57
4.5.2不同溫度之吸附平衡實驗•••••••••••••61
4.5.3不同pH值對吸附水中DOM的影響••••••••••63
4.5.4不同離子強度之影響•••••••••••••••65
4.6 奈米碳管與活性碳吸附之比較•••••••••••67
4.6.1奈米碳管與(PAC)活性碳吸附腐植酸效果之比較•••67
4.6.2 單壁奈米碳管與GAC吸附DOM效果之比較•••••70
4.7與文獻比較DOM之吸附量•••••••••••••71
第五章 結論與建議•••••••••••••••••••73
5.1結論•••••••••••••••••••••••73
5.2建議••••••••••••••••••••••••74
參考文獻••••••••••••••••••••••••75
附錄-口試委員意見回覆•••••••••••••••84
參考文獻 References
Aiken, G. R., McKnight, D. M., Wershaw, R. L. and MacCarthy, P. (1985) “Humic substances in soil, sediment and water” geochemistry, isolation, and characterization. John Wiley & Sons, New York.

Alarcon-Herrera, M. T., Bewtra, J. K. and biswas, N. (1994) ” Seasonal variation in humic substances and their reduction through water reatment processes.” Canadian Journal of Civil Engineering,21, 173-179.

Attias, L., Contu, A., Loizzo, A., Massiglia, M. and Valente, P. (1995) “Trihalomethanes in Drinking Water and Cancer:Risk Assessment and Integrated Evaluation of Available Data, in Animals and Humans”. Science of the Total Environment, 171, 61-68.

Anna, S.Krystyna, P. (2007) “Adsorption of heavy metal ions with carbon nanotubes”. Separation and Purification Technology 58(1), 49-52.

Bull, R. J., Brinbaum, L. S., Cantor, K. P., Rose, J. B., Butterworth, B. E., Pegram, R. and Tuomisto, J. (1995) “Water chlorination: essential process and cancer hazard”. Fund Appl Toxicol 28, 155-166.

Bolto, B., G. Abbt-Braun, D. Dixon, R. Eldridge, F. Frimmel, S. Hesse, S. King and M. Toifl, (1999) “Experimental Evaluation of Cationic Polyelectrolytes For Removing Natural Organic Matter from Water”. Water Science and Technology, 40(9), 71-79.

Collins, M. R., Amy, G. L. and Steelink, C. (1986) “Molecular Weight Distribution, Carboxylic Acidity, and Humic Substance Content of Aquatic Organic Matter Implication for Removal During Water Treatment”. Environment Science & Technology, 20, 1028~1032.

Cicmanec, J. L., Condie, L. W.,Olson, G. R., Wang, S. R. (1991) “90-Day toxocoty study of dichloroacetate”. Metabolism, 30(10), 1024-1039.

Cox, A. R., Mogford, R., Vincent, B. and Harley, S. (2001) “The effect of polymer chain architecture on the adsorption properties of derivatised polyisobutylenes at the carbon:n-heptane interface”. Colloids and Surfaces A:Physicochemical and Engineering, 181, 205~213.

Dresselhaus. M.S, Dresselhans. G, Saito. R.(1995) “Physics of carbon nanotubes”. Carbon, 33, 883-891

Drikas, M. (1997) “Natural Organic Matter - The Curse of the Water Industry”. Water 24(5), 29-33.

Ernst, M., Harley, A. Sachse, Steinberg, C. E. W. and Jekel, M. (2000) “Characterization of the DOC in nanofiltration permeates of a tertiary effluent”. Water Research 34, 2879~2886.

Elkins, K.M.,Nelson, D.J. (2002) “ Spectroscopic approaches to the study of the interaction of aluminum with humic substances”. Coordination Chemistry Reviews 228(2), 205-225.

Freundlich, H. (1906) Uber die adsorption in losungen. Zeitschrift fur Physikalische Chemie 57, 385-470.

Furusawa, T.Smith, J.M. (1974) Intraparticle mass transport in slurries by dynamic adsorption studies. American Institute of Chemical Engineers Journal 20(1), 88-93.

Hayes, K.F.Leckie, J.O. (1987) “Modelling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces”. Journal of Colloid and Interface Science 115(2), 564-572.

Hayes, K.F.Leckie, J.O. (1988) “Modeling Ionic strength effect on adsorption at hydrous oxides/ solution interface”. Journal of Colloid Interface Science 125, 717-726.

Ho, Y. S. and McKay, G. (2000) “The kinetics of sorption of divalent metal ions onto sphagnum moss peat”. Water Research 34, 735-742.

Han, Sang., Kim, S., Lim, H., Chpi, W., Park, H., Yoon, J. and Hyeon, T. (2003) “New nanoporous carbon materials with adsorption capacity and rapid adsorption kinetics for removing humic acids”. Microporous and Mesoporous Materials 58, 131-135.

Iijima, S. (1991)“Helical microtubules of graphitic carbon”. Nature 354, 56.

Johnson, P. D., Dawson, B. V., Goldberg, S. J. (1998) “Cardiac teratogenicity of trichloroacetate on carbonhydrate metabolism in B6C3F1 mice”. Toxicology 130(1), 141-154.

Kim, E. K. and Harold, W. W. (2001) “Effecct of cationic polymer additives on the adsorption of humic acid onto iron oxide particles”. Physicoochemical and Engineering Aspects 194, 123-131.

Kilduff, J.E.Karanfil, T. (2002) “Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry”. Water Research 36(7), 1685-1698.

Karge, H.G.Weitkamp, J. (2008) Adsorption and Diffusion 7.

Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society 38(11), 2221-2295.

Li, Y., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D. and Wei, B. (2001) “Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes”. Chemical Physics Letters 350, 412–416.

Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. and Wei, B. (2002) “Lead adsorption on carbon nanotubes”. Chemical Physics Letters 357, 263-266.

Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z. and Wu, D. (2003) “Adsorption of fluoride from water by aligned carbon nanotubes”. Materials Research Bulletin 38, 469-476.

Li, Y., Di, H., Ding, Z., J, Wu, D., Luan, Z. and Zhu, Y. (2005) “Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes”. Water Research 39, 605-609.

Lu, C.S., Chung, Y.L.Chang, K.F. (2006) “Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes”. Journal of Hazardous Materials 138(2), 304-310.

Lu, C.S.Su, F.S. (2007) “Adsorption of natural organic matter by carbon nanotubes”. Separation and Purification Technology 58(1), 113-121.

Li, A., Xu, M., Li, W., Wang, X.Dai, J. (2008) Adsorption characterizations of fulvic acid fractions onto kaolinite. Journal of Environmental Sciences 20(5), 528-535.

MacCarthy, P., Klusman, R.W., Cowling, S.W.Rice, J.A. (1995) “Water analysis”. Analytical Chemistry 67(12), 525R-525R.

Miller, J. H., Minard, K., Wind, R. A., Oener, G. A., Sasser, L. B., Bull, R. J. (2000) “In vivo MRI measurements of tumor growth induced by dichloroacetate. Implications for mode of action”. Toxicology 145(2-3), 115-125.

Mustafa, Bob. and Harold, W. W. (2001) “Enhanced adsorption of natural matter on calcium carbonate particles through surface charge modification”. Physicoochemical and Engineering Aspects 191, 17-25.

Niwas. R., Gupta, U., Khan, A. A. and Varshney, K. G. (2000) “The adsorption of phosphamidon on the surface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study, Colloid. Surf”. Physicoochemical and Engineering Aspects 164, 115-119.

Nandi, B.K., Goswami, A.Purkait, M.K.(2009)“Adsorption characteristics of brilliant green dye on kaolin”. Journal of Hazardous Materials 161(1), 387-395.

Odom. T.W, Huang. J.L, Kim. P, Lieber. C.M. (1998) “Atomic structure andelectronic properties of single walled carbon nanotubes”. Nature 391,62

Peng, X., Li, Y., Luan, Z., Di, Z., Wang, H., Tian, B. and Jia, Z. (2003) “Adsorption of 1,2- dichlorobenzene from water to carbon nanotubes”. Chemical Physics Letters 376, 154–158.

Rook, J. J. (1974) “Formation of Haloforms During Chlorination of Natural Waters”. Water Treatment Exam 23, 234-242.

Richard, Q. L. and Ralph, T. Y. (2001) “Carbon nanotubes as superior sorbent for dioxin removal”. Journal of the American Chemical Society 123, 2058.

Schnitzer, M. and Khan, S. U. (1972) “Humic Substances in the Environment”. Dekker, New York.

Schnitzer, W. (1976) “The chemistry of humic substances”. Environmental Biogeochemistry, J. O.Nriague ed.Ann Arbor Science, Ann Arobr, MI 1.

Stevenson, F. J. (1985) “Humus chemistry”. John Wiley & Sons, New York.

Singer, P. C. (2000) “Formation and control of disinfection by-products in drinking water: an update”. The 6th International Workshop on Drinking Water Quality Management and Treatment Technology, 149~153.

Thurman, E. M. and Malcolm, R. L. (1983) “Structural study of humic substances: New approaches and methods. In aquatic and terrestrial humic material ”. Ann Anbor, MI, 1-23.

Thurman, E. M. (1985) “Organic geochemistry of natural water”. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht.

Tutem, E., Apak, R. and Unal, C. F. (1998) “Adsorptive removal of chlorophenols from water by bituminous shale”. Water Research 32, 2315-2324.

Thomson, W. J. (2000) “Introduction to transport phenomena”. Prentice Hall PTR, New Jersey, USA.

Ugurlu, M., Gurses, A., Yalcin, M.Dogar, C. (2005) “ Removal of phenolic and lignin compounds from bleached kraft mill effluent by fly ash and sepiolite”. Adsorption 11(1), 87-97.

Wang, S.G., Gong, W.X., Liu, X.W., Gao, B.Y., Yue, Q.Y.Zhang, D.H. (2006) “Removal of fulvic acids from aqueous solutions via surfactant modified zeolite”. Chemical Research in Chinese Universities 22(5), 566-570.

Weng, C.H.Pan, Y.F. (2006) “Adsorption characteristics of methylene blue from aqueous solution by sludge ash”. Colloids and Surfaces A: Physicochemical and Engineering Aspects 274(1-3), 154-162.

Wang, S.G., Liu, X.W., Gong, W.X., Nie, W., Gao, B.Y.Yue, Q.Y. (2007) Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. Journal of Chemical Technology and Biotechnology 82(8), 698-704.

Wang, S.G., Sun, X.F., Liu, X.W., Gong, W.X., Gao, B.Y.Bao, N. (2008) Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms. Chemical Engineering Journal 142(3), 239-247.

Weng, C.H., Sharma, Y.C.Chu, S.H. (2008) Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials 155(1-2), 65-75.

Yang, Q. H., Hou, P. X., Bai, S., Wang, M. Z. and Cheng, H. M. (2001) “Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes”. Chemical Physics Letters 345, 18-24.

Yang, K.Xing, B. (2009) “Adsorption of fulvic acid by carbon nanotubes from water”. Environmental Pollution 157(4), 1095-1100.

Zhang, A., Xie, D. and Wang, Y. (2000) “The catalytic cracking capability of Co/CNT”. Taiyuan: Shanxi Publishing Company of Technology, 363-364.

翁誌煌、黃韋翔、 樓基中(2008),廢棄茶葉粉去除水溶液中鹼性染料(Methylene blue)之吸附特性研究,中華民國環境工程學會廢水處理技術研討會論文集

翁誌煌、黃韋翔(2007),利用廢棄茶葉粉去除水溶液中六價鉻: 動力及平衡吸附研究,中華民國環境工程學會廢水處理技術研討會論文集。

蘇佳琪(2002),氧化鋁及氧化鐵插層蒙脫石吸附水中天然有機物之研究,國立成功大學資源工程研究所碩士論文。

張裕和(1996),水源中各類有機物不同分子量分佈對生成消毒副產物的影響及其控制策略之探討,私立東海大學環境科學所碩士論文。

賴進興、黃麗珍 (2001),腐植酸對氧化鐵吸附重金屬之影響,輔英技術學院研究報告。

陳靜生(1992),「水環境化學」,曉園出版社。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.221.204
論文開放下載的時間是 校外不公開

Your IP address is 3.146.221.204
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code