Responsive image
博碩士論文 etd-0710112-093957 詳細資訊
Title page for etd-0710112-093957
論文名稱
Title
利用MATLAB,C++和平行運算處理在面回訊頻譜影像重建上之比較
The Comparison of Using MATLAB, C++ and Parallel Computing for Proton Echo Planar Spectroscopic Imaging Reconstruction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
55
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-04-27
繳交日期
Date of Submission
2012-07-10
關鍵字
Keywords
平行運算處理、影像重建、圖形處理器、面回訊頻譜影像、磁振頻譜影像
Parallel Computing, Reconstruction, Graphic Processing Unit, Proton Echo Planar Spectroscopic Imaging, Magnetic Resonance Spectroscopic Imaging
統計
Statistics
本論文已被瀏覽 5720 次,被下載 1358
The thesis/dissertation has been browsed 5720 times, has been downloaded 1358 times.
中文摘要
面回訊頻譜影像是一項創新而且快速的磁振頻譜影像技術。為了讓頻譜影像在LCModel上對代謝物做定量分析,必須要有一套自動化的頻譜影像重建系統,而影像重建是為了要得到乾淨的頻譜,即頻譜有良好的信雜比。最近,愈來愈多研究利用圖形處理器來加速影像重建,而統一計算架構是以C語言為基礎來開發的,使得程式設計者可以容易地去撰寫平行運算處理的程式。

面回訊頻譜影像資料包括水抑制和非水抑制掃描,每種掃描都包含ODD跟EVEN資料,而這兩組資料需要分開執行影像重建,而重建的步驟大致上分為K空間濾波、時域濾波、三維快速傅立葉轉換、相位校正和合併ODD跟EVEN資料。我們利用三種程式語言,包括MATLAB、C++、還有平行運算處理來實作面回訊頻譜影像重建,而平行運算處理是利用NVIDIA所提出的統一計算架構。

在我們的研究中,所撰寫的三種程式語言其執行結果,即平均的水抑制和非水抑制面回訊頻譜影像差異極小。在我們的資料量下,平行運算處理的執行時間比MATLAB和C++來得快,尤其是在快速傅立葉轉換的步驟。因此,我們會針對快速傅立葉轉換進行討論,模擬並比較一維至三維快速傅立葉轉換的效能。

根據我們模擬的一維至三維快速傅立葉轉換效能比較,和不同資料量下單一線圈面回訊頻譜影像重建時間比較,顯示利用圖形處理器來做平行運算處理的加速效能與資料量的多寡有關。當資料量約大於65536的時候,如同我們的實驗設計,圖形處理器加速的效能才會明顯優於中央處理器。
Abstract
Proton echo planar spectroscopic imaging(PEPSI) is a novel and rapid technique of magnetic resonance spectroscopic imaging(MRSI). To analyze the metabolite in PEPSI by using LCModel, an automatic reconstruction system is necessary. Recently, many researches use graphic processing unit(GPU) to accelerate imaging reconstruction, and Compute Unified Device Architecture(CUDA) is developed by C language, so the programmers can write the program in parallel computing easily.

PEPSI data acquisition includes non water suppression and water suppression scans, each scan contains odd and even echoes, these two data are reconstructed separately. The image reconstruction contains k-space filter, time-domain filter, three-dimension fast Fourier transform(FFT), phase correction and combine odd and even data. We use MATLAB, C++ and parallel computing to implement PEPSI reconstruction, and parallel computing applied CUDA which proposed by NVIDIA.

In our study, the averaged non water suppression spectroscopic imaging executed by three different programming language are almost the same. In our data scale, the execution time of parallel computing is faster than MATLAB and C++, especially in the FFT step. Therefore, we simulated and compared the performance of one- to three-dimension FFT.

Our result shows that accelerating performance of GPU depends on the number of data points according to the performance of FFT and the execution time of single coil PEPSI reconstruction. While the amount of data points is larger than 65536, as demonstrated in our study, parallel computing contribute in terms of computational acceleration.
目次 Table of Contents
致謝i
摘要ii
Abstract iii
1 緒論1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 大綱. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 工具與方法8
2.1 面回訊頻譜影像資料擷取. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 面回訊頻譜影像重建流程. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 K空間濾波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 時域濾波. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 快速傅立葉轉換. . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 相位校正. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5 合併資料. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 統一計算架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 圖形處理器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 統一計算架構簡介. . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 統一計算架構編譯器. . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.4 計算能力版本. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 實驗環境與結果29
3.1 實驗環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 討論與結論35
4.1 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
參考文獻43
參考文獻 References
[1] Ricardo Otazo, Bryon Mueller, Kamil Ugurbil, Lawrence Wald, and Stefan Posse. Signal-to-Noise Ratio and Spectral Linewidth Improvements Between 1.5 and 7 Tesla in Proton Echo-Planar Spectroscopic Imaging. Magnetic Resonance in Medicine, 56:1200-1210, December 2006.
[2] Sébastien Roujol, Baudouin Denis de Senneville, Erkki Vahala, Thomas Sangild Sørensen, Chrit Moonen, and Mario Ries. Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware. Magnetic Resonance in Medicine, 62:1658-1664, December 2009.
[3] Stefan Posse, Charles DeCaeli, and Denis Le Bihan. Three-dimensional Echo-planar MR Spectroscopic Imaging at Short Echo Times in the Human Brain. Radiology, 192:733-738, September 1994.
[4] Stefan Posse, Gioacchino Tedeschi, Robert Risinger, Robert Ogg, and Denis Le Bihan. High Speed 1H Spectroscopic Imaging in Human Brain by Echo Planar Spatial-Spectral Encoding. Magnetic Resonance in Medicine, 33:34-40, November 1995.
[5] NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050. NVIDIA CUDA C Programming Guide Version 4.0, May 2011. http://www.nvidia.com.
[6] Paul C . Lauterbur. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature, 242:190-191, 1973.
[7] Mehdi Poustchi-Amin, Scott A. Mirowitz, Jeffrey J. Brown, Robert C. McKinstry, and Tao Li. Principles and Applications of Echo-planar Imaging: A Review for the General Radiologist. RadioGraphics, 21:767-779, 2001.
[8] P. Mansfield. Spatial mapping of the chemical shift in NMR. Magnetic Resonance in Medicine, 1:370-386, 1984.
[9] R. Otazo, J. Alger, A. Caprihan, T. Li, C. Gasparovic, and S. Posse. Quantitative Short Echo-Time Spectroscopic Imaging at High-Field: Automated Data Reconstruction and LCModel fitting. Proceedings International Society of Magnetic Resonance in Medicine, 13:2460, 2005.
[10] Stephen W. Provencher. Automatic quantitation of localized in vivo1H spectra with LCModel. NMR in Biomedicine, 14:260-264, June 2001.
[11] Thomas Schiwietz, Ti-chiun Chang, Peter Speier, and Rüdiger Westermann. MR Image Reconstruction Using the GPU. Proceedings of Society of Photographic Instrumentation Engineers, 6142:61423T-61423T-12, March 2006.
[12] Matteo Frigo and Steven G. Johnson. FFTW: an adaptive software architecture for the FFT. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 3:1381-1384, May 1998.
[13] NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050. CUDA CUFFT Library, February 2011. http://www.nvidia.com.
[14] Matteo Frigo and Steven G. Johnson. A program to benchmark FFT software benchFFT, http://www.fftw.org/benchfft/.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code