Responsive image
博碩士論文 etd-0710112-123550 詳細資訊
Title page for etd-0710112-123550
論文名稱
Title
彎曲平板波過敏原感測系統之分貝線性可程式化可變增益放大器與具數位校正之電壓峰值偵測器
A dB-Linear Programmable Variable Gain Amplifier and A Voltage Peak Detector with Digital Calibration for FPW-based Allergy Antibody Sensing System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-21
繳交日期
Date of Submission
2012-07-10
關鍵字
Keywords
峰值偵測器、彎曲平板波、分貝線性、可變增益放大器、局部迴授、重配置、數位校正
flexural-plate-wave (FPW), peak detector, digital calibration, reconfiguration, local-feedback, variable gain amplifier, dB-linear
統計
Statistics
本論文已被瀏覽 5687 次,被下載 0
The thesis/dissertation has been browsed 5687 times, has been downloaded 0 times.
中文摘要
本論文提出彎曲平板波(Flexural-Plate-Wave, FPW)過敏原感測系統所需之分貝線性可程式化可變增益放大器,以及具數位校正之電壓峰值偵測器。
第一個主題探討一分貝線性可程式化可變增益放大器。本設計以源極追隨器做為輸入端,可接收極低直流準位之輸入訊號。並將輸入電壓與輸出電流呈線性關係的局部迴授(local-feedback)轉導電路,設計為轉導級與負載級。只要利用數位控制開關改變轉導級與負載級之轉導值大小,即可改變本設計之增益。除此之外,本設計亦利用一重配置方法,藉由數位輸入訊號之MSB使轉導級與負載級交換,可減少佈局面積並改善增益變動的線性度,可達到小於0.86 dB的增益誤差。
第二個主題為探討一具數位校正之電壓峰值偵測器。本設計的電壓峰值偵測方法為,利用積分器、數位類比轉換器與電壓比較器,產生一負緣落在輸入弦波訊號波峰處的方波訊號,利用此方波訊號觸發取樣及維持電路即可偵測電壓峰值。而數位校正方法是藉由狀態訊號產生器所輸出的兩狀態訊號,分別取樣及維持對應至不同數位類比轉換器電壓值的兩電壓峰值。再將此兩電壓峰值輸入一電壓比較器,校正控制器讀取電壓比較器之輸出,以得出能偵測到最小電壓誤差的數位類比轉換器輸出電壓值。藉由所提出的數位校正方法,可偵測頻率20 MHz弦波的電壓峰值,而所偵測到的電壓峰值誤差小於0.81 %。
Abstract
This thesis proposes a dB-linear programmable variable gain amplifier (VGA) and a voltage peak detector with digital calibration for FPW-based antibody sensing system.
In the first topic, a dB-linear programmable variable gain amplifier is proposed. By using two source followers as the input terminals, input signals with very low DC offset could be received. The linear local-feedback transconductors are employed to be trans-condurctor-stage and load-stage. Besides, a reconfiguration method is used to reduce the layout area and improve the linearity of the gain to attain gain error less than 0.86 dB measured on silicon.
In the second topic, a voltage peak detector with digital calibration is proposed. The voltage peak of the input sine-wave signal is sampled and held by using an integra-tor, a digital-to-analog converter, and a voltage comparator to generate a square-wave signal. Besides, the voltage error caused by the propagation delay could be calibrated by the proposed digital calibration method. The frequency of input signal is up to 20 MHz and the voltage error is justified to be less than 0.81 % by simulations.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 概論 1
1.1 研究動機 1
1.2 相關技術與文獻探討 2
1.2.1 FPW過敏原感測系統 2
1.2.2 可程式化可變增益放大器 3
1.2.3 電壓峰值偵測器 4
1.3 論文大綱 6
第二章 分貝線性可程式化可變增益放大器 8
2.1 簡介 8
2.2 可變增益放大器整體架構 8
2.3 可變增益放大器電路設計 10
2.3.1 源極追隨器級 10
2.3.2 重配置可變增益級分析 11
2.3.3 局部迴授轉導電路分析 15
2.3.4 重配置編碼器 17
2.3.5 電壓除法器 18
2.3.6 共模迴授電路 20
2.3.7 偏壓電路 20
2.4 可變增益放大器電路模擬與佈局 21
2.4.1 電路佈局後模擬結果 21
2.4.2 電路佈局 24
2.4.3 預計規格 26
2.5 可變增益放大器晶片實作與量測 27
2.5.1 晶片照相圖 27
2.5.2 晶片量測結果 28
2.5.3 效能比較 30
2.6 結果與討論 31
第三章 具數位校正之電壓峰值偵測器 33
3.1 簡介 33
3.2 電壓峰值偵測器整體架構 33
3.3 電壓峰值偵測器電路設計 35
3.3.1 積分器 35
3.3.2 數位類比轉換器 36
3.3.3 狀態訊號產生器 37
3.3.4 校正控制器 38
3.4 電壓峰值偵測器電路模擬與佈局 40
3.4.1 電路佈局後模擬結果 40
3.4.2 電路佈局 43
3.4.3 預計規格與效能比較 45
3.5 電壓峰值偵測器晶片實作與量測 46
3.6 結果與討論 51
第四章 結論與未來研究方向 53
參考文獻 56
參考文獻 References
[1] I.-Y. Huang, M.-C. Lee, Y.-W. Chang, and R.-S. Huang, “Development and characterization of FPW based allergy biosensor,” 2007 IEEE International Symposium on Industrial Electronics (ISIE 2007), pp. 2736-2740, Jun. 2007.
[2] H. J. Gould, B. J. Sutton, A. J. Beavil, R. L. Beavil, N. McCloskey, H. A. Coker, D. Fear, and L. Smurthwaite, “The biology of IgE and the basis of al-lergic disease,” Annual Review of Immunology, vol. 21, pp. 579-628, Apr. 2003.
[3] C.-H. Hsu, Y.-R. Lin, Y.-D. Tsai, Y.-C. Chen, and C.-C. Wang, “A frequen-cy-shift readout system for FPW allergy biosensor,” 2011 IEEE International Conference on IC Design and Technology (ICICDT 2011), pp. 1-4, May 2011.
[4] 林晏如, “應用於攜帶式生醫系統之低功率半回合RC5加解密演算法之電路與適用於FPW-based生醫感測器之頻移讀取電路,” 國立中山大學電機工程學系碩士班論文, 2011.
[5] V. Giannini, J. Craninckx, S. D’Amico, and A. Baschirotto, “Flexible baseband analog circuits for software-defined radio front-ends,” IEEE Journal of Sol-id-State Circuits, vol. 42, no. 7, pp. 1501-1512, Jul. 2007.
[6] B. Razavi, “Differential amplifiers,” in Design of Analog CMOS Integrated Circuits, 1st ed. New York: McGraw-Hill, 2001, pp. 126-129.
[7] B. Rahmatian and S. Mirabbasi, “A low-power 75 dB digitally programmable CMOS variable-gain amplifier,” 20th Canadian Conference on Electrical and Computer Engineering (CCECE 2007), pp. 522-525, Apr. 2007.
[8] S. Y. Kang, J. Jang, I.-Y. Oh, and C. S. Park, “A 2.16 mW low power digital-ly-controlled variable gain amplifier,” IEEE Microwave and Wireless Compo-nents Letters (MWCL), vol. 20, no. 3, pp. 172-174, Mar. 2010.
[9] H.-H. Nguyen, Q.-H. Duong, H.-B. Le, J.-S. Lee, and S.-G. Lee, “Low-power 42 dB-linear single-stage digitally-controlled variable gain amplifier,” Elec-tronics Letters, vol. 44, no. 13, pp. 780-782, Jun. 2008.
[10] H.-H. Nguyen, H.-N. Nguyen, J.-S. Lee, and S.-G. Lee, “A binary-weighted switching and reconfiguration-based programmable gain amplifier,” IEEE Transactions on Circuits and Systems Part II: Express Briefs, vol. 56, no. 9, pp. 699-703, Sep. 2009.
[11] G. D. Geronimo, P. O’Connor, and A. Kandasamy, “Analog CMOS peak de-tect and hold circuits. Part 1. Analysis of the classical configuration,” Nuclear Instruments and Methods in Physics Research A, vol. 484, pp. 533-543, May 2002.
[12] S.-B. Park, J. E. Wilson, and M. Ismail, “The CHIP – peak detector for multi-standard wireless receivers,” IEEE Circuits and Devices Magazine, vol. 22, no. 6, pp. 6-9, Nov. 2006.
[13] R. Dlugosz and K. Iniewski, “High-precision analogue peak detector for X-ray imaging applications,” Electronics Letters, vol. 43, no.8, pp. 440-441, Apr. 2007.
[14] J. R. Lin and H. P. Chou, “A peak detect and hold circuit using ramp sampling approach,” 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), pp. 309-312, Oct. 2009.
[15] S. Szczepanski, A. Wyszynski, and R. Schaumann, “Highly linear volt-age-controlled CMOS transconductors,” IEEE Transactions on Circuits and Systems Part I: Fundamental Theory and Applications, vol. 40, no. 4, pp. 258-262, Apr. 1993.
[16] S. R. Zarabadi and M. Ismail, “Linear voltage to current converter including feedback network,” U.S. Patent 5 317 279, May 31, 1994.
[17] F. Matsumoto, T. Miyazawa, S. Nakamura, and Y. Noguchi, “A local-feedback transconductor with improved linearity for low-power application,” 2008 In-ternational Symposium on Intelligent Signal Processing and Communications Systems (ISPACS 2008), pp. 1-4, Feb. 2009.
[18] F. Matsumoto, K. Onizawa, S. Nakamura, H. Takeuchi, and Y. Noguchi, “A new linear transconductor for gyrator-type active filters,” 2009 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS 2009), pp. 272-275, Dec. 2009.
[19] Q.-H. Duong, Q. Le, C.-W. Kim, and S.-G. Lee, “A 95-dB linear low-power variable gain amplifier,” IEEE Transactions on Circuits and Systems Part I: Regular Papers, vol. 53, no. 8, pp. 1648-1657, Aug. 2006.
[20] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd ed. New Jersey: John Wiley & Sons, 2010, pp. 614-656, pp. 978-982.
[21] H.-H. Nguyen, H.-N. Nguyen, J. Lee, and S.-G. Lee, “A high-linearity low-noise reconfiguration-based programmable gain amplifier,” 36th European Solid-State Circuits Conference (ESSCIRC), pp. 166-169, Sep. 2010.
[22] G. Cui, H. Yang, and S. Xia, “CMOS digitalized peak detector for a MEMS-based electrostatic field sensor,” 7th IEEE International Conference on Nanotechnology, 2007 (IEEE-NANO 2007), pp. 131-134, Aug. 2007.
[23] M. Chen, O. Boric-Lubecke, and V. M. Lubecke, “0.5-μm CMOS implementa-tion of analog heart-rate extraction with a robust peak detector,” IEEE Trans-action on Instrumentation and Measurement, vol. 57, no. 4, pp. 690-698, Apr. 2008.
[24] C. Sawigun, W. Ngamkham, and W. A. Serdijn, “An ultra low-power peak-instant detector for a peak picking cochlear implant processor,” 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS 2010), pp. 222-225, Nov. 2010.
[25] T.-J. Lee, W.-C. Hsiao, and C.-C. Wang, “20 MHz accurate peak detector for FPW allergy biosensor with digital calibration,” 2011 13th International Sym-posium on Integrated Circuits (ISIC 2011), pp. 476-479, Dec. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.151.141
論文開放下載的時間是 校外不公開

Your IP address is 3.145.151.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code