Responsive image
博碩士論文 etd-0710114-212631 詳細資訊
Title page for etd-0710114-212631
論文名稱
Title
製程條件對雙芴環衍生物之影響及其應用於可調光色有機電激發光二極體
Study of the process condition effects on spirobifluorene derivative and its application in color-tunable organic light-emitting diodes.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-21
繳交日期
Date of Submission
2014-08-10
關鍵字
Keywords
升溫方式、堆疊、笓基、雙芴環、可調光色 OLED、蒸鍍速率
bifluorene, pyrene, stacking, heating method, deposition rate, color-tunable OLED
統計
Statistics
本論文已被瀏覽 5657 次,被下載 242
The thesis/dissertation has been browsed 5657 times, has been downloaded 242 times.
中文摘要
近年來因為分子設計的精進對於有機光電材料的發展具有重大的貢獻,而在共軛有機化合物中,笓基(Pyrene)因具有較剛硬的平面性發光團,使其衍生物具有極佳的螢光量子產率及高熱穩定性,且螺旋雙芴環(spirobifluorene)由於其剛性結構強使得材料之熱穩定性提高。在小分子 OLED 元件製程中常利用真空蒸鍍法來製成有機薄膜及光電元件,故具高熱穩定性之材料可確保製作過程及後續應用時材料穩定性。
本實驗室先前設計並合成之新型雙芴環衍生物材料 2,2',7,7'-tetra-(pyrene -1-yl)-9,9'-spirobifluorene (TPSBF)中,發現此小分子材料之放光光譜展現有別於一般小分子材料之放光行為,其異常寬廣且幾乎涵蓋整個可見光範圍的放光光譜在一般小分子材料中是很罕見的。根據先前研究結果得知此寬光譜現象係由於膜層表面形態的不同,進而影響膜層之分子間聚集堆疊之程度而產生,且其光譜含有多重放光峰值,其主峰分別在460 nm(分子本身放光)、510 nm(分子與分子間聚集放光)及550 nm~650 nm(共軛波長更長之分子放光)的位置。在特定製程條件下,甚至可得不同光色,其中還包含寬頻譜之高效率白光。
本論文將藉由不同的製程條件控制發光層 TPSBF 之膜層形態進而達到調變光譜之目的,實驗中發現升溫方式與蒸鍍速率的快慢與否直接影響 TPSBF 於蒸鍍源內之受熱時間長度,而 TPSBF 在製程高溫下有更多的時間產生聚集的行為進而改變膜層形態。最終將以此方法製作單一小分子發光材料可調光色有機發光二極體(Color-tunable OLED)。最後本論文以 TPSBF 為發光層製作下列元件結構:
ITO(170 nm)/2T-NATA(15 nm)/NPB(65 nm)/TPSBF(10 nm)/Alq3(30 nm)/LiF(0.8 nm)/Al(200 nm),其中發光層 TPSBF 將搭配實驗中所歸納出的製程條件,成功利用單一小分子發光材料 TPSBF 製作成 Color-tunable OLED,並得Sky blue OLED之最大亮度34740 cd/m2,CIE座標(0.228, 0.281) @11 V,最大發光效率4.37 cd/A,最大功率效率3.41 lm/W,Light yellow OLED之最大亮度59800 cd/m2,CIE座標(0.438, 0.504)@3 V,最大發光效率6.78 cd/A,最大功率效率5.05 lm/W,White OLED之最大亮度34820 cd/m2,CIE座標(0.326, 0.376)@12.5 V,最大發光效率5.48 cd/A,最大功率效率4.32 lm/W。

關鍵字:雙芴環、笓基、堆疊、升溫方式、蒸鍍速率、可調光色 OLED
Abstract
Recently, “Pyrene” is a well-known substitutive group because the rigid structure and hole-injection ability of pyrene units can improve the thermal and electronic properties of blue OLED materials. The aromatic ring of pyrene not only improves the thermal and hole-injection ability of derivatives, but also provides high photoluminescence (PL) efficiency and high carrier mobility. Spirobifluorene core provide an extremely thermal stability because of its highly rigid molecular structure .
In this study, we developed small molecule structures with spiro-type molecules based on 9,9-spirobifluorene named TPSBF , the PL spectrum of TPSBF film prepared by vacuum deposition varies by different process conditions , it appears broadband spectrum that resulted from the different type of morphology due to stacking of the pyrene moieties when we used the different process conditions.
We utilized different heating methods and deposition rates to grow the emission layer TPSBF and form a series of single-emitting component organic light-emitting diodes with the same device structure : ITO(170 nm) / 2T-NATA(15 nm) / NPB(65 nm) / TPSBF(10 nm) / Alq3 (30 nm) / LiF(0.8 nm) / Al(200 nm) . Interestingly, the emission colour of these OLEDs are tunable and depending on the processing condition of the emission layer. Sky blue OLED exhibited the maximum luminance 34740 cd/m2 at 1449 mA/cm2, the maximum current and power efficiency were 4.37 cd/A and 3.41lm/W, respectively , and CIE coordinate of (0.228 , 0.281) at 11V. Light yellow OLED exhibited the maximum luminance 59800 cd/m2 at 1421 mA/cm2 , the maximum current and power efficiency were 6.78 cd/A and 5.05lm/W, respectively , and CIE coordinate of (0.438 , 0.504) at 3V. White OLED exhibited the maximum luminance 34820 cd/m2 at 1294 mA/cm2 , the maximum current and power efficiency were 5.48 cd/A and 4.32lm/W, respectively , and CIE coordinate of (0.326 , 0.376) at 12.5V.
Key Word : bifluorene , pyrene , stacking , heating method, deposition rate , color-tunable OLED
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 OLED 發展與簡介 3
1-3 OLED 元件結構 6
1-4 OLED 材料介紹 8
1-4-1 電極材料 9
1-4-2 電洞注入層 10
1-4-3 電洞傳輸層 11
1-4-4 電子傳輸層 12
1-4-5 發光層 13
第二章 理論基礎 18
2-1 OLED發光原理 18
2-2 發光機制 21
2-2-1 螢光與磷光 21
2-2-2 材料共軛長度與發光波長 23
2-2-3 濃度焠熄效應 24
2-2-4 OLED發光效率之定義 25
第三章 研究動機與實驗內容 27
3-1 研究動機 27
3-2 元件材料 31
3-3 實驗架構 32
3-4 實驗儀器簡介 34
3-4-1 製程儀器 34
3-4-2 量測分析儀器 37
3-5 OLED元件製作流程 46
3-5-1 陽極ITO玻璃基板前處理 47
3-5-2 有機材料蒸鍍 49
3-5-3 陰極金屬材料蒸鍍 50
3-5-4 元件封裝製程 51
3-6 本研究之元件製作及量測 53
3-6-1 元件製作 53
3-6-2 元件量測 54
第四章 結果與討論 55
4-1 不同製程條件下之TPSBF 薄膜特性探討 55
4-1-1 不同製程條件下之PL光譜圖 57
4-1-2 以TEM拍攝不同光色之主發光膜層形態 63
4-2 TPSBF 不同製程條件下薄膜形成之機制 67
4-3 TPSBF 製程條件與元件光色之關係 68
4-4 改變TPSBF厚度且製程條件不變下探討元件光色之變化 71
4-5 單一發光材料 Sky blue ; Light yellow ; White OLED 78
第五章 總結論 91
參考文獻 93
參考文獻 References
[1] M. Pope, H. P. Kallmann, Magnante, Journal of Chemical Physics, 38, 2042, (1963).
[2] C. W. Tang, S. A. VanSlyke, Applied Physics Letters, 51, 913, (1987).
[3] J. H. Burrououghes, D. D. C Bradley, A. R. Brown, R. N. Marks, K. MacKet, R.H.
Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539, (1990).
[4] C.W. Tang, Applied Physics Letters, 48, 183, (1985).
[5] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Japan Journal of Applied Physic, 27, 713, (1988).
[6] M. Era, C. Adachi, T. Tsutsui, S. Ssito, Chemical Physics Letters, 178, 488, (1991).
[7] J. Kido, M. Kohda, K. Okuyama, K. Nagai, Applied Physics Letters, 61, 761, (1992).
[8] G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, Z. H. Kafafi, Applied Physics Letters, 75, 766, (1999).
[9] K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chemistry of Materials, 10, 1017, (1998).
[10] L. Lu , F. F. Yu, L. Long, J. N. Yu, B. Wei, J. H. Zhang, M. Ichikawa, Synthetic Metals, 160, 2417, (2010).
[11] C. Giebeler, H. Antoniadis, D. D. C. Bradley, Y. Shirota, Journal of Applied Physics, 85, 608, (1999).
[12] J. D. Anderson, E. M. McDonald, P. A. Lee, M. L. Anderson, E. L. Ritchie, H. K. Hall, T. Hopkins, E. A. Mash, J. Wang, A. B. Kippelen, N. Peyghambarian, R. M. Wightman, N. R. Armstrong, Journal of the American Society of Nephrology, 120, 9646, (1998).
[13]陳金鑫、黃孝文 著,“OLED 有機電激發光材料與元件”,五南出版社,(2005).
[14] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Thin Solid Films, 363, 327, (2000).
[15] J. Feng, F. Li, W. Gao, G. Cheng, W. Xie, S. Liu, Applied Physics Letters, 81, 2935, (2002).
[16] T. H. Liu, C. Y. Iou, S. W. Wen, C. H. Chen, Thin Solid Films, 441, 223, (2003).
[17] Z. Y. Xie, L. S. Hung, S. T. Lee, Applied Physics Letters, 79, 1048, (2001).
[18] Y. Hamada, H. Kanno, H. Fujii, T. Tsujioka, H. Takahashi, ACS Poly Millennial 2000 Abstracts, 167, (2000).
[19] T. H. Liu, C. Y. Iou, C. H. Chen, Applied Physics Letters, 83, 5241, (2003).
[20] M. Y. Chang, Y. K. Han, C. C. Wu, S. C. Lin, W. Y. Huang, Journal of The Electrochemical Society, 155, J345, (2008).
[21] V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G. Kozlov, M. E. Thompson, S. R. Forrest, Chemical Physics Letters, 287, 455, (1988)
[22] S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 1(1997).
[23] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K. Seki, Journal of Applied Physics, 83, 4928, (1998).
[24] Forrest S R. Nature, 428, 911, (2004).
[25] X. M. Yu, H. S. Kwok, W. Y. Wong, G. J. Zhou. Chemical Materials, 18, 5097, (2006).
[26] Y. R. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, S. R. Forrest, Nature, 440, 908, (2006).
[27] K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, Journal of the American Chemical Society, 124, 576, (2002).
[28] T. Yasuda, I. Yamaguchi, T. Yamamoto. Advanced Materials, 15, 293, (2003).
[29] US Patent 5683823.
[30] D. I. Kim, J. W. Han, T. W. Kim, Solid State Communications, 135, 400, (2005).
[31]顧鴻壽 著,“光電有機電激發光顯示器”,新文京開發出版社,(2001).
[32] M. Y. Chang, Y. K. Han, C. C. Wu, S. C. Lin, W. Y. Huang, Journal of The Electrochemical Society, 155, J345, (2008).
[33] F. Liu, C. Tang , Q. Q. Chen, F. F. Shi, H. B. Wu, L. H. Xie, B. Peng, W. Wei, Y. Cao, W. Huang, The Journal of Physical Chemistry C, 113, 4641, (2009).
[34] S. L. Tao, Z. K. Peng, X. H. Zhang, P. F. Wang, C. T. Lee, S. T. Lee, Advanced Function Materials, 15, 1716, ( 2005).
[35] H. Y. Wen, M. Y. Chang, Journal of Solid State Science and Technology, 1, (3), R103-R107, (2012).
[36]趙俊銘,“新型有機發光材料 2,2',7,7'-tetra-(pyren-1-yl)-9, 9'-spirobifluorene (TPSBF)應用於有機電激發光二極體之研究”國立中山大學光電工程研究所碩士論文,高雄,(2011)。
[37] Y. Shi, J. Liu, Y. Yang, Journal of Applied Physics, 87, 9, (2000).
[38] T. Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, Journal of Physical Chemistry B, 104, 237, (2000).
[39]鄭祐松,“1,3,5-Tri(1-pyrenyl)benzene(TPB3)之材料發光特性探討及其應用於有機電激發光元件之研究”國立中山大學光電工程研究所碩士論文,高雄,(2009)。
[40] S. L. Tao, S. D. Xu, X. H. Zhang, Chemical Physics Letters,429,622 (2006).
[41]王溥嵐,“蒸鍍速率對雙芴環衍生物之影響及其應用於單一發光材料白光有機發光二極體之研究 ”國立中山大學光電工程研究所碩士論文,高雄,(2013)。
[42] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765, (1994).
[43] T. Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, Journal of Physical Chemistry B, 104, 237, (2000).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code