Responsive image
博碩士論文 etd-0710114-221137 詳細資訊
Title page for etd-0710114-221137
論文名稱
Title
近場電紡聚谷氨酸甲酯/聚偏氟乙烯複合壓電纖維 特性分析
Characteristics of poly (γ-methyl l-glutamate)/poly (vinylidene fluoride) piezoelectric fiber composites via near-field electrospinning process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-10
關鍵字
Keywords
能量擷取、聚偏氟乙烯、複合壓電纖維、高分子混摻、近場電紡、聚谷氨酸甲酯
near-field electrospinning (NFES), energy harvesting, PVDF, PMLG, polymer blend, piezoelectric fiber composites
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
本研究提出的聚谷氨酸甲酯 [Poly (γ-methyl l-glutamate), PMLG] /聚偏氟乙烯 [Poly (vinylidene fluoride), PVDF] 複合壓電纖維,乃藉由PMLG與PVDF聚合物溶液之共混,形成濃度30.68 wt%之PMLG/PVDF高分子混摻溶液,並由近場電紡(Near-field electrospinning, NFES)製程的高壓電場(1×107-1.6×107 V/m)作用,使溶液突破表面張力形成泰勒錐(Taylor cone),進而形成有序的PMLG/PVDF複合壓電纖維(線徑17.25-7.62 μm)於滾筒收集裝置(切線速度 1256.64 mm/s)。研究中透過微差式掃描熱卡計(Differential scanning calorimetry, DSC)、傅利葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)與拉伸實驗,來探討施加電場對結構變化與機械性質的影響。研究發現當PMLG/PVDF溶液在電場的作用下,可提升電偶極之取向,獲得最高抗拉強度27.47 MPa與楊氏係數2.77 GPa之複合壓電纖維。最後,貼附PMLG/PVDF複合壓電纖維於平行電極上,製成可撓式PMLG/PVDF能量擷取裝置,經由拍打測試可獲得最大電壓0.08 V與功率637.81 pW,其機電轉換效率相對於PMLG或PVDF所製造而成的能量擷取裝置而言,有1-3倍的提升。由此證實PMLG/PVDF複合壓電纖維具備優異的壓電性質,因此可被廣泛應用於生物工程、綠色能源、可穿戴式傳感器與能量擷取器等領域。
Abstract
In this study, the technology of near-field electrospinning (NFES) is developed to collect orderly poly (γ-methyl L –glutamate) (PMLG)/poly (vinylidene fluoride) (PVDF) fiber composites with enhanced piezoelectricity. PMLG solution was blended with PVDF solution uniformly to prepare PMLG/PVDF solution (30.68 wt%). When the droplet of polymer blend overcame the surface tension of PMLG/PVDF solution to form Taylor cone at high electric field of 1×107-1.6×107 V/m, a PMLG/PVDF piezoelectric fiber (diameter=17.25-7.62 µm) was spun from the tip of Taylor cone and collected on a rotating glass collector orderly at the tangential velocity of 1256.64 mm/s. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to analyze structure interaction and secondary structure within the blends of PMLG/PVDF polymers. NFES process has a positive impact on the PMLG/PVDF piezoelectric properties, which can make dipole a better orientation. The ultimate stress (27.47 MPa) and Young’s modulus (2.77 GPa) of the optimum PMLG/PVDF fiber composites were measured by micro-tensile testing. Finally, PMLG/PVDF piezoelectric fiber composites were patterned on a PET-based structure with parallel electrodes as a flexible PMLG/PVDF energy harvester to capture ambient energy. By vibrating test, the maximum peak voltage (0.08 V) and power (637.81 pW) can be obtained. The electro-mechanical energy conversion efficiency of the PMLG/PVDF energy harvester is 1-3 fold higher than PVDF or PMLG energy harvester. PMLG/PVDF piezoelectric fiber composites with good piezoelectricity could promote the applications in various fields such as biomedical engineering, green energy, wearable sensors, and energy harvesters.
目次 Table of Contents
論文審定書 I
致謝 II
摘要 III
Abstract IV
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 1
1-3 研究目的 2
1-4 本文架構 3
第二章 文獻回顧 4
2-1 壓電效應 4
2-1-1 正壓電效應 4
2-1-2 逆壓電效應 5
2-1-3 極化處理 5
2-2 壓電材料相關研究 6
2-3 電紡製程 8
2-4 電紡PVDF之相關研究 12
2-5 電紡PMLG之相關研究 13
2-6 壓電操作模式 18
第三章 研究方法 19
3-1 先驅溶液調配流程 20
3-1-1 材料備製 20
3-1-2 調配先驅溶液步驟 22
3-2 近場電紡製程 25
3-3 近場電紡製程之設備 26
3-4 能量擷取裝置製作 28
3-5 實驗儀器 31
第四章 結果與討論 46
4-1 製程參數 46
4-1-1 先驅溶液參數 46
4-1-2 近場電紡製程參數 49
4-2 結構分析 64
4-2-1 DSC量測 64
4-2-2 FTIR量測 65
4-3 拉伸實驗 69
4-4 電性量測 75
4-4-1 固定頻率下之電性量測 75
4-4-2 力量(N)、輸出電壓(V)與頻率(Hz)的關係 79
4-4-3 匹配阻抗與最大輸出功率 82
第五章 結論及未來展望 84
5-1 結論 84
5-2 未來展望 85
參考文獻 86
參考文獻 References
[1] A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar, “Single Crystals and Nonlinear Process for Outstanding Vibration-Powered Electrical Generators,” IEEE Trans Ultrason Ferroelectr Freq Control, Vol. 53, No. 4, pp. 673-684, 2006.
[2] N. E. duToit, B. L. Wardle and S. G. Kim, “Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters,” Integrated Ferroelectrics, Vol. 71, pp. 121-160, 2005.
[3] N. G. Elvin, A. A. Elvin and M. Spector. “A Self-Powered Mechanical Strain Energy Sensor,” Smart Mater and Structures, Vol. 10, pp. 293-299, 2001.
[4] H. P. Hu, J. G. Cao and Z. J. Cui. “Performance of a Piezoelectric Bimorph Harvester with Variable Width,” Journal of Mechanics, Vol. 23, No. 03, pp. 197-202, 2007.
[5] N. S. Shenck and J. A. Paradiso, “Energy Scavenging with Shoe-Mounted Piezoelectrics,” IEEE Micro, Vol. 21, No. 3, pp. 30-42, 2001.
[6] A. Sanchez-Ferrer and R. Mezzenga, “Secondary Structure-Induced Micro- and Macrophase Separation in Rod-Coil Polypeptide Diblock, Triblock, and Star-Block Copolymers,” Macromolecules, Vol. 43, No. 2, pp. 1093-1100, 2010.
[7] H. F. Lee, H. S. Sheu, U. S. Jeng, C. F. Huang and F. C. Chang, ” Preparation and Supramolecular Self-Assembly of a Polypeptide-Block-Polypseudorotaxane,” Macromolecules, Vol. 38, pp. 6551-6558, 2005.
[8] P. Papadopoulos, G. Floudas, I. Schnell, T. Aliferis, H. Iatrou and N. Hadjichristidis, “Nanodomain-Induced Chain Folding in Poly (γ-benzyl-l-glutamat)-b-Polyglycine Diblock Copolymers,” Biomacromolecules, Vol. 6, No. 4, pp. 2352-2361, 2005.
[9] J. Y. Rao, Y. F. Zhang, J. Y. Zhang and S. Y. Liu, “Facile Preparation of Well-Defined AB2 Y-shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry,” Biomacromolecules, Vol. 9, pp. 2586-2593, 2008.
[10] E. Ibarboure, E. Papon and J. Rodriguez-Hernandez, “Nanostructured Thermotropic PBLG–PDMS–PBLG Block Copolymers,” Polymer, Vol. 48, pp. 3717-3725, 2007.
[11] E. Ibarboure, J. Rodríguez-Hernández and E. Papon, “Thermotropic Liquid Cristal Behavior on PBLG-PDMS-PBLG Triblock Copolymers,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 44, pp. 4668-4679, 2006.
[12] H. A. Klok, J. F. Langenwalter and S. Lecommandoux, “Self-Assembly of Peptide-Based Diblock Oligomers,” Macromolecules, Vol. 33, No. 21, pp. 7819-7826, 2000.
[13] S. Lecommandoux, M. F. Achard, J. F. Langenwalter and H. A. Klok, “Self-Assembly of Rod-Coil Diblock Oligomers Based on α-Helical Peptides,” Macromolecules, Vol. 34, No. 26, pp. 9100, 2001.
[14] J. S. Crespo, S. Lecommandoux, R. Borsali, H. A. Klok and V. Soldi, “Small-Angle Neutron Scattering from Diblock Copolymer Poly(styrene-d8) -b-poly (γ-benzyl L-glutamate) Solutions:  Rod−Coil to Coil−Coil Transition,” Macromolecules, Vol. 36, No. 4, pp. 1253-1256, 2003.
[15] P. Papadopoulos, G. Floudas, I. Schnell, I. Lieberwirth, T. Q. Nguyen and H. A. Klok, ”Thermodynamic Confinement and α-Helix Persistence Length in Poly (γ-benzyl-L-glutamate)-b-poly (dimethyl siloxane)-b-poly (γ-benzyl-L-glutamate) Triblock Copolymers,” Biomacromolecules, Vol. 7, No. 2, pp. 618-626, 2006.
[16] H. A. Klok and S. Lecommandoux,”Solid-State Structure, Organization and Properties of Peptide-Synthetic Hybrid Block Copolymers,” Advances in Polymer Science, Vol. 202, pp. 75-111, 2006.
[17] 蔡欣桐,仿自然氫鍵作用力在高分子材料上的應用,國立中山大學材料與光電科學系碩士論文,2010。
[18] I. Patel, “Ceramic Based Intelligent Piezoelectric Energy Harvesting Device,” Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, Edited by C. Sikalidis, pp. 133-154, 2011.
[19] 周卓明,壓電力學,全華科技圖書股份有限公司,2003。
[20] 池田拓郎,基本壓電材料學,復漢出版社,1997。
[21] A. Ballato, "Piezoelectricity: History and New Thrusts," 1996 IEEE Ultrasonic Symposium, Vol. 1, pp. 575-583, 1996.
[22] X. Chen, S. Xu and N. Yao, “1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers,” Nano Letters, Vol. 10, No. 6, pp. 2133-2137, 2010.
[23] Y. Qi, J. Kim, T.D. Nguyen, B. Lisko, P.K. Purohit and M.C. Mcalpine, “Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbons,” Nano Letter, Vol. 11, No. 3, pp. 1331-1336, 2011.
[24] J.F. Nye, “Physical Properties of Crystals,” Oxford : Clarendon Press, 1957.
[25] Z. L. Wang, “Energy Harvesting for Self-Powered Nanosystems,” Nano Research, Vol. 1, No. 1, pp. 1-8, 2008.
[26] J. Lin, P. Fei, J. Song, X. Wang, C. Lao, R. Tummaia and Z. L. Wang, “Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator,” Nano Letter, Vol. 8, No. 1, pp. 328-332, 2008.
[27] Z. L. Wang, X. D. Wang, J. Song, J. Liu and Y. F. Gao, “Piezoelectric Nanogenerators for Self-Powered Nanodevices,” IEEE Computer Society, Vol. 7, No. 1, pp. 49-55, 2008.
[28] Y. Hu, Y. Zhang, C. Xu, G. Zhu and Z. L. Wang, “High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display,” Nano Letter, Vol. 10, No. 12 , pp. 5025-5031, 2010.
[29] G. Zhu, R. Yang, S. Wang and Z. L. Wang, “Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array,” Nano Letter, Vol. 10, No. 8, pp. 3151-3155, 2010.
[30] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, “Self-Powered Nanowire Devices,” Nature Nanotechnology, Vol. 5, No. 5, pp. 366-373, 2010.
[31] S. Xu and Z. L. Wang, “One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties,” Nano Research, Vol. 4, No. 11, pp. 1013-1098, 2011.
[32] 朱建國、孫小松、李衛,電子與光電子材料,國防工業出版社,65頁,2007。
[33] Y. Qi, N. T. Jafferis, K. Jr. Lyons, C. M. Lee, H. Ahmad and M. C. McAlpine, “Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion,” Nano Lett., Vol. 10, No. 2, pp. 524-528, 2010.
[34] L. Rayleigh, “XX. On the Equilibrium of Liquid Conducting Masses Charged with Electricity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, pp. 184-186, 1882.
[35] J. F. Cooley, “Apparatus for Electrically Dispersing Fluids,” US Patent Specification No. 692631, 1902.
[36] F. Anton, “Process and Apparatus for Preparing Artificial Threads,” US Patent Specification No. 1975504, 1934.
[37] G. Taylor, “Electrically Driven Jets,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 313, No, 1515. pp. 453-475, 1969.
[38] Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang and J. Sheng, “Preparation and Properties of Electrospun Poly(vinylidene fluoride) Membranes,” Journal of Applied Polymer Science, Vol. 97, pp. 466-474, 2005.
[39] X. Ren and Y. Dzenis, "Novel Continuous Poly(vinylidene fluoride) Nanofibers," Materials Research Society, Vol. 920, pp. 55-62, 2006.
[40] C. Chang, Y. K. Fuh and L. Lin, “A Direct-Write Piezoelectric PVDF Nanogenerator,” Solid-State Sensors, Actuators and Microsystems Conference, pp. 1485-1488, 2009.
[41] C. Chang, V. H. Tran, J. Wang, Y. K. Fuh and L. Lin, “Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency,” Nano Letters, Vol. 10, pp. 726-731, 2010.
[42] D. Sun, C. Chang, S. Li and L. Lin, “Near-Field Electrospinning,” Nano Letters, Vol. 6, pp. 839-842, 2006.
[43] J. Pu, X. Yan, Y. Jiang, C. Chang and L. Lin, “Piezoelectric Actuation of Direct-Write Electrospun Fibers,” Sensors and Actuators A: Physical, Vol. 164, pp. 131-136, 2010.
[44] C. Chang, K. Limkrailassiri and L. Lin, “Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber Patterns,” Applied Physics Letters, Vol. 93, pp. 123111, 2008.
[45] J. Pu, X. Yan, Y. Jiang, C. Chang and L. Lin, “Piezoelectric Actuation of a Direct Write Electrospun PVDF Fiber,” IEEE International Conference on Micro Electro Mechanical Systems, pp. 1163-1166, 2010.
[46] K. I. Minato, K. Ohkawa and H. Yamamoto, “Chain Conformations of Poly(γ-benzyl-L-glutamate)Pre and Post an Electrospinning Process,” Macromolecular Bioscience, Vol. 6. No. 7, pp. 487-495, 2006.
[47] Y. Hwang, Y. Je, D. Farrar, J. E. West, S. Michael Yu and W. Moon, “Piezoelectric Properties of Polypeptide-PMMA Molecular Composites Fabricated by Contact Charging,” Polymer, Vol. 52, pp. 2723-2728, 2011.
[48] D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. L. Wilson, J. E. West, S. Michael Yu, “Permanent Polarity and Piezoelectricity of Electrospun α-Helical Poly(α-Amino Acid) Fibers,” Advanced Materials, Vol. 23, pp. 3594-3598, 2011.
[49] J.F. Nye, “Physical Properties of Crystals,” Oxford : Clarendon Press, 1964.
[50] H Kawai, “The Piezoelectricity of Poly(vinylidene fluoride),” Japanese Journal of Applied Physics, Vol. 8, pp. 975-976, 1969.
[51] I. S. Elashmawi, E. M. Abdelrazek, H. M. Ragab and N. A. Hakeem, “Structural, Optical and Dielectric Behavior of PVDF Films Filled with Different Concentrations of Iodine,” Physica B, Vol. 405, pp. 94-98, 2010.
[52] T. T. Wang, J. M. Herbert and A. M. Glass, “The Applications of Ferroelectric Polymers,” British Polymer Journal, Vol. 20, pp. 533, 1988.
[53] M. Neidhofer, F. Beaume, L. Ibos, A. Bernes and C. Lacabanne, “Structural Evolution of PVDF During Storage or Annealing,” Polymer, Vol. 45, pp. 1679-1688, 2004.
[54] P. Sajkiewicz, A. Wasiak and Z. Goclowski, “Phase Transitions During Stretching of Poly(vinylidene fluoride),” European Polymer Journal, Vol. 35, pp. 423-429, 1999.
[55] Y. Peng and P. Wu, “A Two Dimensional Infrared Correlation Spectroscopic Study on the Structure Changes of PVDF During the Melting Process,” Polymer, Vol. 45, pp. 5295-5299, 2004.
[56] Y. Chen and C. Y. Shew, “Conformational Behavior of Polar Polymer Models under Electric Fields,” Chemical Physics Letters, Vol. 378, pp. 142-147, 2003.
[57] Z. H. Liu, C. T. Pan, L. W. Lin, J. C. Huang and Z. Y. Ou, “Directwrite PVDF Nonwoven Fiber Fabric Energy Harvesters via the Hollow Cylindrical Nearfield Electrospinning Process,” Smart Materials and Structures, Vol. 23, No. 2, 025003, 2014.
[58] 陳啟仁,利用不同極性衍生物調控聚胜肽之二級結構,國立中山大學材料與光電科學系碩士論文,2011。
[59] J. P. Watson and F. H. Crick, “Genetical Implications of the Structure of Deoxyribonucleic Acid,” Nature, Vol. 171, pp. 964-967, 1953.
[60] L. Pauling and R. B. Corey, “Configurations of Polypeptide Chains with Favored Orientations Around Single Bonds,” Proc. Natl. Acad. Sci., Vol. 37, pp. 729-740, 1951.
[61] J. Kim, J. Park, S. Lee and D. Sohn, “Surface-Grafting of Polyglutamate on Si Wafer Using Micro Contact Printing,” Molecular Crystals and Liquid Crystals, Vol. 464, pp. 211-216, 2007.
[62] P. J. Flory, “Phase Equilibria in Solutions of Rod-Like Particles,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 234, pp. 73-89, 1956.
[63] M. F. Perutz, “New X-Ray Evidence on the Configuration of Polypeptide Chains: Polypeptide Chains in Poly-γ-benzyl-L-glutamate, Keratin and Hæmoglobin,” Nature, Vol. 167, pp. 1053-1054, 1951.
[64] C. Robinson and J. C. Ward, “Liquid-Crystalline Structures in Polypeptides,” Nature, Vol. 180, pp. 1183-1184, 1957.
[65] S. M. Yu, V. P. Conticello, G. Zhang, C. Kayser, M. J. Fournier, T. L. Mason and D. A. Tirrell, “Smectic Ordering in Solutions and Films of a Rod-Like Polymer Owing to Monodispersity of Chain Length,” Nature, Vol. 389, pp. 167-170, 1997.
[66] S. E. Blondelle, B. Forood, R. A. Houghten and E. Perez-Paya, “Polyalanine-Based Peptides as Models for Self-associated Beta-Pleated-Sheet Complexes,” Biochemistry, Vol. 36, pp. 8393-8400, 1997.
[67] P. Papadopoulos and G. Floudas, “Self-Assembly and Dynamics of Poly(γ-benzyl-L-glutamate) Peptides,” Biomacromolecules, Vol. 5, pp. 81-91, 2004.
[68] Y. Hwang, Y. Je, D. Farrar, J. E. West, S. M. Yu and W. Moon, “Piezoelectric Properties of Polypeptide-PMMA Molecular Composites Fabricated by Contact Charging,” Polymer, Vol. 52, pp. 2723-2728, 2011.
[69] R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee and S. Ramakrishna, “Precipitation of Nanohydroxyapatite on PLLA/PBLG/Collagen Nanofibrous Structures for the Differentiation of Adipose Derived Stem Cells to Osteogenic Lineage,” Biomaterials, Vol. 33, pp. 846-855, 2012.
[70] Y. Hakamada, N. Ohgushi, N. F. Kondo and T. Matsuda, “Electrospun Poly(γ -Benzyl-L-Glutamate) and Its Alkali-Treated Meshes: Their WaterWettability and Cell-Adhesion Potential,” Journal of Biomaterials Science, Vol. 23, pp. 1055-1067, 2012.
[71] K. Tsuboi, E. Marcelletti, H. Matsumoto, M. Ashizawa, M. Minagawa, H. Furuya, A. T. Abe, “Preparation of Poly(γ-Benzyl-L-Glutamate) Nanofibers by Electrospinning from Isotropic and Biphasic Liquid Crystal Solutions,” Polymer Journal, Vol. 44, pp. 360-365, 2012.
[72] K. I. Minato, K. Ohkawa, H. Yamamoto, “Chain Conformations of Poly(γ-benzyl-L-glutamate) Pre and Post an Electrospinning Process,” Macromol. Biosci., Vol. 6, pp. 487-495, 2006.
[73] L. Liang, T. Fukushima, K. Nakamura, S. Uemura, T. Kamata and N. Kobayashi, “Temperature-Dependent Characteristics of Nonvolatile Transistor Memory Based on a Polypeptide,” Journal of Materials Chemistry C, Vol. 2, pp. 879-883, 2014.
[74] T. J. Deming, “Polypeptide Materials: New Synthetic Methods and Applications,” Advanced Materials, Vol. 9, pp. 299-311, 1997.
[75] S. Lecommandoux, “Bulk Self-Assembly of Linear Hybrid Polypeptide-Based Diblock and Triblock Copolymers,” Complex Macromolecular Architectures: Synthesis, Characterization, and Self-Assembly, First Edition, pp. 623-645, 2011.
[76] H. Schlaad, “Solution Properties of Polypeptide-based Copolymers,” Adv. Polym. Sci., Vol. 202, pp. 53-73, 2006.
[77] H. Sakai, H. J. Cheong, T. Kodzasa, H. Tokuhisa, K. Tokoro, M. Yoshida, T. Ikoga, K. Nakamura, N. Kobayashi and S. Uemura, “Effect of Amide Bond in Gate Dielectric Polymers on Memory Performance of Organic Field-Effect Transistors,” Japanese Journal of Applied Physics, Vol. 53, pp. 05HB13, 2014.
[78] 歐宗育,新穎滾筒式近場靜電紡PVDF纖維,國立中山大學機械與機電工程 學系碩士論文,2012。
[79] 陳啟仁,利用不同極性衍生物調控聚胜肽之二級結構,國立中山大學材料與光電科學系碩士論文,2011。
[80] 周千筑,以電紡製備高分子奈米機械元件之研究,國立交通大學機械工程學系碩士論文,2008。
[81] D. Li, Y. Xia, “ Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning,” Nano Letters, Vol. 4, 933-938, 2004
[82] D. H. Reneker and I. Chun, “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning,” Nanotechnology, Vol. 7, pp. 216-223, 1996.
[83] M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff and A. Greiner, “Polymer, Metal, and Hybrid Nano and Mesotubes by Coating Degradable Polymer Template Fibers (TUFT Process),” Advanced Materials, Vol. 12, pp. 637-640, 2000.
[84] M. Cloupeau and B. Prunet-Foch, “Electrostatic Spraying of Liquids: Main Functioning Modes,” Journal of Electrostatics, Vol. 25, pp. 165-184, 1990.
[85] N. Bhardwaj and S. C. Kundu, “Electropinning a Fascinating Fiber Fabrication Technique,” Biotechnology Advances, Vol. 28, pp. 325-347, 2010.
[86] H. M. Chen and D. G. Yu, “An Elevated Temperature Electrospinning Process for Preparing Acyclovir-Loaded PAN Ultrafine Fibers,” Journal of Materials Processing Technology, Vol. 210, pp. 1551-1555, 2010.
[87] S. W. Kuo and C. J. Chen. “Secondary Structures and Miscibility Behavior of Poly(L -glutamate)s with Phenolic Resin,” Macromolecules, Vol. 44, pp. 7315-7326, 2011.
[88] M. Nasir, H. Masumoto, M. Minagawa, A. Taniola, T. Danno and H. Horibe, “Formation of β-phase Crystalline Structure of PVDF Nanofiber by Electrospray Desposition: Additive Effect of Ionic Fluorinated Surfactant,” Polymer Journal, Vol. 39, pp.670-674, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.188.158.92
論文開放下載的時間是 校外不公開

Your IP address is 18.188.158.92
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code