Responsive image
博碩士論文 etd-0710114-230826 詳細資訊
Title page for etd-0710114-230826
論文名稱
Title
鈦合金/聚碳酸酯/碳纖維/聚醚醚酮/克維拉混合型複合材料積層板承受高速衝擊後之數值分析
Numerical Analysis of Ti/PC/APC-2/Kevlar Hybrid Composite Laminates after High-Velocity Impact
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-21
繳交日期
Date of Submission
2014-08-11
關鍵字
Keywords
複材積層板、ANSYS/LS-DYNA、高速衝擊、彈導極限、聚碳酸酯
Composite Laminate, LS-DYNA, Ballistic limit, PC, High velocity impact
統計
Statistics
本論文已被瀏覽 5691 次,被下載 714
The thesis/dissertation has been browsed 5691 times, has been downloaded 714 times.
中文摘要
本論文主旨在於為探討鈦合金/聚碳酸酯/碳纖維/聚醚醚酮/克維拉纖維混合型複合材料承受高速衝擊後之彈導極限與破壞情形,運用有限元素套裝軟體ANSYS/LS-DYNA來模擬高速衝頭對於複材積層板衝擊之過程,並且分析其疊序方法與改變其中材料厚度對於彈導極限之影響,並且分析衝頭動能、積層板吸收能量變化和高速衝擊下的破壞模式對於不同積層板之差異性。
文中主要分為兩大部分:第一部分先對ANSYS/LS-DYNA模擬高速衝擊流程先做簡介,接著再對Ti/PC積層板改變其積層板之疊序以及改變聚碳酸酯的厚度為變因來進行模擬並得到其彈導極限,接著再加入APC-2/Kevlar並調整積層板之疊序來進行高速衝擊模擬,最後建立起能抵抗真實子彈高速衝擊之積層板;第二部分則是從不同角度來針對複材積層板的彈導極限高低進行分析,並且推論其模擬結果之原因。
藉由分析模擬結果可以得知,將較薄的聚碳酸酯與鈦合金來交錯疊序所組成的複材積層板,由於聚碳酸酯太薄,其中鈦合金板為抵抗衝擊之主要因素。;比較厚度為2mm、3mm、4mm、5mm、6mm之聚碳酸酯,其中4mm與6mm之聚碳酸酯擁有較好之抗衝擊能力;分析衝擊模擬結果可以得出積層板以Ti/PC/APC-2/Kevlar此種疊序較能抗衝擊;[Ti/PC/APC-2/Kevlar/(Ti/Kevlar2/PC)6 ]s與[Ti/PC/APC-2/Kevlar/(Ti/Kevlar2/PC)5 ]s複材積層板皆能抵抗500m/s以上之高速衝擊,由總厚度來看,採用厚度較薄之[Ti/PC/APC-2/Kevlar/(Ti/Kevlar2/PC)6 ]s複材積層板會擁有較佳之抗衝擊能力。
Abstract
This thesis aims to investigate the ballistic limit and failure mechanism of Ti/PC(Polycarbonate)/APC-2(AS4/PEEK)/Kevlar hybrid composite laminates after high velocity impact. The ANSYS/LS-DYNA software was used to simulate the high-velocity impact process. The analysis includes using different lay-ups and the thickness of material, projectile velocity and kinetic energy changing, the internal energy of laminate, and the difference of the failure mode by high velocity impact in different laminates.
The work is divided into two parts: first is the introduction of simulation process by using ANSYS/LS-DYNA. The ballistic limit of Ti/PC composite laminates with different lay-ups and thicknesses of PC were obtained. Then, adding APC-2/Kevlar to the laminates and using different lay-ups to obtain its ballistic limits. It is to establish a laminates which can against the reality ballistic high velocity impact. Second, the ballistic limit of composite laminate were discussed and analyzed by multiple ways.
From the simulations, the composite laminates have higher ballistic limits when using Ti/PC alternating stacking sequence. The major reason for resisting impact for Ti/PC composites is Ti layer because the thickness of PC in laminates is too thin. In other words, the composite laminates with 4,6mm thicknesses PC layers have better impact resistance. Using Ti/PC/APC-2/Kevlar the stack sequence will have better impact resistance for composite laminates. [Ti/PC/APC-2/Kevlar/(Ti/Kevlar2/PC)5 ]s and [Ti/PC/APC-2/Kevlar/(Ti/Kevlar2/PC)6 ]s composite laminates can resist impact velocity higher than 500m/s. [Ti/PC/APC-2/Kevlar/(Ti/Kevlar2/PC)6 ]s laminates have much better impact resistance for thick laminates.
目次 Table of Contents
目錄
論文審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 複合材料簡介 1
1-3 研究方向 2
1-4 文獻回顧 2
第二章 理論基礎 4
2-1 複合材料積層板能量吸收理論 4
2-2 非線性理論 4
2-3 複合材料破壞準則 5
第三章 數值模擬 8
3-1 ANSYS/LS-DYNA簡介 8
3-2 模擬材料性質簡介 8
3-2-1 鈦合金 8
3-2-2 聚碳酸酯(Polycarbonate, PC) 9
3-2-3 碳纖維/聚醚醚酮APC-2(AS4/PEEK) 9
3-2-3 克維拉複合材料(Kevlar-29/epoxy-Al2O3) 9
3-3 有限元素模擬建構 10
3-3-1 單位使用 10
3-3-2 網格分割 10
3-3-3 材料模型介紹 11
3-3-4 接觸與邊界條件設定 11
3-3-5 運算時程設定 11
3-3-6 後處理 12
3-3-7 失效準則 12
3-4 模擬分析過程 13
3-4-1 前處理 13
3-4-2 求解 14
3-4-3 後處理 14
3-5 收斂性分析 14
第四章 數值模擬結果 29
4-1 Ti/PC積層板不同疊序之彈導極限 29
4-2 改變PC厚度之Ti/PC積層板之彈導極限 29
4-3 Ti/PC/APC-2不同疊序之彈導極限 29
4-4 Ti/PC/APC-2/Kevlar不同疊序之彈導極限 30
4-5 Ti/PC/APC-2/Kevlar積層板之PC不同厚度的彈導極限 30
4-6 高速衝擊之模擬結果 30
4-7 內能吸收與殘留速度 30
第五章 結果分析與討論 49
5-1 聚碳酸酯在疊層中對於彈導極限之影響 49
5-2 加入APC-2/Kevlar之疊序對彈導極限之影響 50
5-3 高速衝擊之模擬 50
5-4 破壞模式 52
5-5 衝頭動能與能量變化 52
第六章 結論 57
參考文獻 58
參考文獻 References
[1]Barauskas, R., Abraitienė, A., Computational analysis of impact of a bullet against the multilayer fabrics in LS-DYNA. International Journal of Impact Engineering 2007;34;1286-1305.
[2]Sevlat, E., Experimental and numerical approaches for estimating ballistic limit velocities of woven composite beams. International Journal of Impact Engineering 2013;45;16-27.
[3]Shsh, Q. H., Impact resistance of a rectangular polycarbonate armor plate subjected to single and multiple impacts. International Journal of Impact Engineering. 2009;36;1128-1135.
[4]Zhang, G. M., Batra, R. C., Zheng, J., Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Composite 2008;39;476-489.
[5]Zhang, D., Sun Y., Chen, L., Pan, N., A comparative study on low-velocity impact response of fabric composite laminates. Materials and Design 2013;50;750-756.
[6]Heimbs, S., Bergmann, T., Schurler, D., Toso-Pentecôte, N., High velocity impact on preloaded composite plates. Composite Structure 2014;111;158-168.
[7]Ivañez, I., Santiuste, C., Barbero, E., Sanchez-Saez, S., Composite Structure 2011;93;2392-2399.
[8]Mohotti, D., Ngo, T., Mendis, P., Raman, S. N., Polyurea coated composite aluminium plates subjected to high velocity projectile impact. Materials and Design 2013;52;1-16.
[9]劉上盟,鈦合金/碳纖維/聚醚醚酮混合型複合材料積層板承受高速衝擊後之數值分析,國立中山大學機械所碩士論文,2013。
[10]賴冠樺,鈦合金/聚醚醚酮複合材料積層板承受高速衝擊後之數值分析,國立中山大學機械所碩士論文,2013。
[11]林正傑,碳纖維/聚二醚酮複合材料積層板之衝擊變形機制與數值模擬,國立中山大學機械所碩士論文,1998。
[12]Ramadhan, A. A., Abu Talib, A. R., Mohd Rafie, A. S., Zahari, R., High Velocity Impact Damage in Kevlar-29/Epoxy-AL_2 O_3. Journal of Advanced Science and Engineering Research 2012;2;138-154.
[13]Kasavajhala, A. R. M., Gu, L., Fracture analysis of Kevlar-49/epoxy and e-glass/epoxy doublers for reinforcement of cracked aluminum plates. Composite Structures 2011;93;2090-2095.
[14]陳精一,ANSYS電腦輔助工程實務分析,全華出版社,2010。
[15]ANSYS Modeling and Meshing Guide, ANSYS Release 10.0. ANSYS, Inc.
[16]Fuchs, C., Bhattacharyya, D., Fakirov, S., Microfibril Reinforced Polymer-Polymer Composite: Application of Tsai-Hill Equation to PP/PET Composites. Composites Science and Technology 2006;66;3161-3171.
[17]Cheng, Y. S., Physical Interpretation of Hashin’s Criterion of Fatigue Failure under Multiaxial Stress. Engineering Fracture Mechanics 1986;24;165-167.
[18]Degrieck, J., Van-Paepegem, W., Calculation of Damage-Dependent Directional Failure Indices From The Tsai-Wu Static Failure Criterion. Composites Science and Technology 2003;63;305-310.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code