Responsive image
博碩士論文 etd-0710115-103817 詳細資訊
Title page for etd-0710115-103817
論文名稱
Title
電阻式記憶體之電荷與熱效應對於轉態機制之研究
Study on the Influence of Charge Quantity and Thermal Effect in Resistance Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-08
繳交日期
Date of Submission
2015-08-10
關鍵字
Keywords
電阻式記憶體、電阻切換、電荷、熱效應
RRAM, Resistance Switching, Thermal Effect, Charge Quantity
統計
Statistics
本論文已被瀏覽 5658 次,被下載 49
The thesis/dissertation has been browsed 5658 times, has been downloaded 49 times.
中文摘要
本論文對電阻式記憶體三種轉態機制Forming、Reset、Set作物理機制探討。並使用Agilent B1530快速量測儀器(Fast IV),其脈衝時間解析度可達10奈秒,可觀察到在極短時間內所發生的變化。論文一開始使用電晶體(Transistor)在汲極端(Drain)串接一電阻記憶體(RRAM)成1T1R作為量測元件,藉由電晶體控制通過RRAM電流大小,避免掉因大電流通過RRAM所造成的永久性崩潰。
Forming過程限制電流愈大,Forming後進行電壓電流(I-V)掃描時,其高電阻阻態(HRS)阻值分佈由高到低,並且把該阻態對應之RRAM電壓電流曲線圖進行絕緣體載子傳導機制分析(Fitting)時,發現HRS傳導機制隨Forming限流愈大時而有所不同。
接著在Reset過程中,藉由調變輸入脈衝電壓之升壓時間(Raising time)調控Reset發生前之加熱時間(Heating time)。隨著Heating time時間愈長,Reset後所到達的HRS會漸增,最後會達到一定的飽和值,並提出HRS阻值有所差異與電場控制之氧離子範圍及熱活化的氧離子數目有關。Reset輸入元件功率大時,其HRS阻值較高,而HRS最後的飽和值則與輸入最大電壓有關。
Set物理機制探討則使用為單顆電阻式記憶體並以原子層沉積(ALD)氧化鉿薄膜作為主動層之結構。給入一正三角脈衝電壓,使元件達Set。萃取出在不同的升壓時間,達到相同的阻態時,所需要的電荷量與轉態時間之關係,且在轉態的過程中可以區分為兩階段式的轉態。
另外對量測到的電壓電流圖進行絕緣體載子傳導機制分析(Fitting),會發現到在Set轉態過程中,會因氧離子聚積而造成第二階段的Schottky傳導。
Abstract
In this study, three kinds of resistive switching mechanism: Forming、Reset、Set process in Resistance Random Access Memory(RRAM) will be discussion. And measure by Agilent B1530 fast IV measurement instrument, it makes the time resolution in 10 ns, providing instantaneous observation. The first three part, RRAM was connected in transistor drain, the transistor acts as current controller in order to prevent huge current passing through RRAM causing it hard breakdown result it couldn’t operate normally.
As the Forming process compliance current is more larger, it’s High Resistance State(HRS) will distribute from high to low and fitting the I-V curve, the electron transported in HRS by different way.
In the Reset process, by controlling different of triangle pulse Raising time to modulate the Heating time before starting Reset. When the Heating time is more longer, the HRS will gradually increasing and stop at a saturation value. The HRS has different because of the heat activing the different of number oxygen(active O2-),the final saturation value is causing by the maximum voltage. Reset input larger power rate, the HRS will larger, too.
In Set process, hafnium oxide was served as RRAM active layer, deposited by Atomic Layer Deposition (ALD) with a thickness of 10nm, Applying a triangle pulse, causing RRAM set to the Low Resistance State (LRS).And calculating the charge quantity during set process in different switching time. It could divide into two switching processes.Besides, the I-V curve fitting shows there are two step of Schottky emission conduction mechanism. The second Schottky emission was special and it was caused by the oxygen ion accumulation.
目次 Table of Contents
[致謝+i]
[中文摘要+ii]
[Abstract+ iii]
[目錄+iv]
[圖目錄+vii]
[表目錄+xi]
[第一章 緒論+1]
[1-1 前言+1]
[1-2 研究目的與動機+2]
[第二章 文獻回顧+3]
[2-1 次世代非揮發性記憶體+3]
[2-1-1 鐵電式記憶體(FeRAM)+3]
[2-1-2 磁阻式記憶體(MRAM)+4]
[2-1-3 相變化記憶體(PCRAM)+5]
[2-1-4 電阻式記憶體(RRAM)+6]
[2-2 電阻式記憶體切換機制+6]
[2-3 絕緣體載子傳導機制+9]
[2-3-1 歐姆傳導(Ohmic Conduction)+10]
[2-3-2 蕭特基發射(Schottky emission)+11]
[2-3-3 普爾-法蘭克發射( Poole-Frenkel emission)+12]
[2-3-4 跳躍傳導(Hopping Conduction)+13]
[2-3-5 Fowler-Nordheim 穿隧(F-N Tunneling)+14]
[第三章 實驗設備介紹+15]
[3-1 製程設備+15]
[3-1-1 多靶磁控濺鍍系統(Multi-Target Sputter)+15]
[3-2 電性量測設備+16]
[3-2-1 半導體精準電性量測系統+16]
[第四章 Forming過程中通過 RRAM的電荷量對高電阻態(HRS) 的傳導機制之影響+18]
[4-1 實驗動機+18]
[4-2 以三角脈衝方式使電阻式記憶體Forming+18]
[4-3 實驗結果與討論+19]
[第五章 Reset過程中電極之電流熱效應對電阻切換機制之影響+24]
[5-1 實驗動機+24]
[5-2 相同限流下,改變不同Raising time使元件Reset+24]
[5-3 實驗結果與討論+25]
[第六章 Reset過程中輸入RRAM功率之大小對電阻切換機制之影響+35]
[6-1 實驗動機+35]
[6-2 改變不同Reset Max. Voltage使元件Reset+35]
[6-3 實驗結果與討論+35]
[第七章 Set過程中電荷量對轉態過程的影響+40]
[7-1 實驗動機+40]
[7-2 氧化鉿薄膜電阻式記憶體元件製作流程+40]
[7-2-1 白金上電極備製+41]
[7-3 萃取氧化鉿薄膜Set時所通過之電荷量+42]
[7-3-1 Set Process 1 電荷量(Charge Quantity)與轉態時間(Switching Time)之關係+49]
[7-3-2 Set Process 2 電荷量(Charge Quantity)與升壓時間(Raising Time)之關係+56]
[7-4 Set Process所造成的氧離子聚積效應+59]
[第八章 結論+63]
[參考文獻+64]
參考文獻 References
[1] H. Ebbinghaus, Memory: A contribution to experimental psychology: University Microfilms, 1913.
[2] G. Palma, E. Vianello, O. Thomas, H. Oucheikh, S. Onkaraiah, A. Toffoli, et al., "A novel HfO 2-GeS 2-Ag based conductive bridge RAM for reconfigurable logic applications," in Solid-State Device Research Conference (ESSDERC), 2013 Proceedings of the European, 2013, pp. 264-267.
[3] J. L. Moll and Y. Tarui, "A new solid state memory resistor," Electron Devices, IEEE Transactions on, vol. 10, pp. 338-338, 1963.
[4] R. E. Jones Jr, P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, et al., "Ferroelectric non-volatile memories for low-voltage, low-power applications," Thin Solid Films, vol. 270, pp. 584-588, 12/1/ 1995.
[5] 葉林秀, 李佳謀, 徐明豐, and 吳德和, "磁阻式隨機存取記憶體技術的發展-現在與未來," 物理雙月刊, vol. 26, pp. 607-619, 2004.
[6] W. Reohr, H. Honigschmid, R. Robertazzi, D. Gogl, F. Pesavento, S. Lammers, et al., "Memories of tomorrow," Circuits and Devices Magazine, IEEE, vol. 18, pp. 17-27, 2002.
[7] H. S. P. Wong, S. Raoux, K. SangBum, L. Jiale, J. P. Reifenberg, B. Rajendran, et al., "Phase Change Memory," Proceedings of the IEEE, vol. 98, pp. 2201-2227, 2010.
[8] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, G.-W. Chang, K.-C. Chang, Y.-H. Tai, et al., "Silicon introduced effect on resistive switching characteristics of WOX thin films," Applied Physics Letters, vol. 100, p. 022904, 2012.
[9] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, pp. 28-36, 6// 2008.
[10] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices," Electron Devices, IEEE Transactions on, vol. 56, pp. 193-200, 2009.
[11] H. S. P. Wong, H. Y. Lee, S. M. Yu, Y. S. Chen, Y. Wu, P. S. Chen, et al., "Metal-Oxide RRAM," Proceedings of the Ieee, vol. 100, pp. 1951-1970, Jun 2012.
[12] S. M. Sze and K. K. Ng, Physics of semiconductor devices: John Wiley & Sons, 2006.
[13] D. Ielmini and Y. Zhang, "Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices," Journal of Applied Physics, vol. 102, p. 054517, 2007.
[14] H. Xiao, Introduction to semiconductor manufacturing technology vol. 16: Prentice Hall Upper Saddle River, NJ, 2001.
[15] 王志揚, "鋰矽氧化物薄膜電阻式記憶體在神經系統中突觸仿生之應用研究," 中山大學材料與光電科學學系研究所學位論文, pp. 1-96, 2014.
[16] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, et al., "Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 775-778.
[17] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, et al., "TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching," Applied Physics Letters, vol. 89, p. 223509, 2006.
[18] T. J. Chu, T. C. Chang, T. M. Tsai, H. H. Wu, J. H. Chen, K. C. Chang, et al., "Charge Quantity Influence on Resistance Switching Characteristic During Forming Process," Electron Device Letters, IEEE, vol. 34, pp. 502-504, 2013.
[19] S. Yong-En, T.-C. Chang, T.-M. Tsai, H. Ya-Chi, C. Kuan-Chang, T. Ming-Jinn, et al., "Redox Reaction Switching Mechanism in RRAM Device With Pt/CoSiOx/TiN Structure," Electron Device Letters, IEEE, vol. 32, pp. 545-547, 2011.
[20] 林宏洋, "氧化鉿薄膜電阻切換特性之研究," 碩士, 材料與光電科學學系研究所, 國立中山大學, 高雄市, 2013.
[21] M.-C. Chen, T.-C. Chang, Y.-C. Chiu, S.-C. Chen, S.-Y. Huang, K.-C. Chang, et al., "The resistive switching characteristics in TaON films for nonvolatile memory applications," Thin Solid Films, vol. 528, pp. 224-228, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code