Responsive image
博碩士論文 etd-0710115-114936 詳細資訊
Title page for etd-0710115-114936
論文名稱
Title
氧化石墨薄膜之製備及特性探討
Preparation and characterization of graphite oxide film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-28
繳交日期
Date of Submission
2015-08-18
關鍵字
Keywords
旋轉塗佈、sp2混成軌域、聚芳香醚高分子、片電阻、氧化石墨
Graphite oxide, Surface resistance, sp2-hybridized bonded structure, Poly (arylene ether)s, Spin-coated
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
本研究團隊致力於開發一系列功能性聚芳香醚高分子材料,其中發現以九苯環為核心結構之聚芳香醚高分子材料擁有良好的熱穩定性(Td5%=543℃),且由熱分析儀(TGA)指出,此聚芳香醚高分子在高達800℃的環境底下仍有約70 %的殘餘量。材料經過高溫鍛燒處理後,經由元素分析儀分析結果指出其殘餘之物質為碳元素,因此我們推斷經由高溫鍛燒後含有石墨烯之可能。
先前的研究結果指出,在無催化反應的條件下於石英玻璃上成長出sp2混成軌域含量為54 %的氧化石墨薄膜。為了成長出環狀結構的平面薄膜,本研究中,在催化反應的條件下於銅基板成長氧化石墨。實驗結果指出,此方式將有利於碳原子聚集,因此sp2混成軌域的含量大幅增加至79 %。
另一方面,於無催化反應的條件下,升高鍛燒溫度也能成長出平面性更佳的氧化石墨薄膜。當溫度為1000℃時,苯環間的排列更緻密,整體結構變得更平整,使sp2的含量增加至66 %,最低片電阻可以達到40 Ω/square,導電率為2.099×102 S/cm,功函數大約為4.7 eV,且具有良好的穩定性,相當適合應用於有機光電元件上。
經由濕製程的方式,可以容易地解決目前氧化石墨無法大面積化的問題。而關於氧化石墨的應用方向,因為其擁有良好的導電特性、匹配的功函數及良好的穩定性,將來有機會應用於有機光電元件上。
Abstract
In this research, we dedicated to design functional Poly (arylene ether)s materials, we found that the Poly(arylene ether)s structure had good thermal stability(Td5%=543℃). Thermogravimetric analyzer(TGA) showed Poly (arylene ether)s still residual amount of about 70 % under 800℃ environment. After heating at high-temperature, we determined that the residual substance is carbon which is analyzed by elemental analyzer, therefore, we infer contain graphene's possible.
Previously, we growth the graphite oxide (GO) film without catalytic reaction, the content have two-dimensional (2D) sp2-hybridized bonded structure and sp3, it had a sp2 content of 54.47 %. In order to growth the flat film, in this study, growth GO film under the conditions of catalytic reaction environment. Experimental results showed that this approach will benefit the aggregate of carbon atoms, thus significantly increasing the sp2 content to 79 %.
On the other hand, in addition to the catalytic reaction, increasing the heating temperature can also get the flat GO film. When the heating temperature at 1000℃, the arrangement between benzene ring is more compact, the structure becomes more smooth, the content of sp2 increased from 54 % to 66 %, lowest sheet resistance of GO film was 40 Ω / square, conductivity was 2.099 × 102 S / cm, work function was about 4.7 eV.
It could be easily to make large area of graphite oxide by wet process. The directions on the application of graphite oxide, because of its excellent electrical properties, work function and good stability, have the opportunity to apply to the organic photovoltaic element.
目次 Table of Contents
致謝 + i
摘要 + ii
Abstract + iii
目錄 + v
圖目錄 + ix
表目錄 + xiii
第一章 緒論 + 1
1-1 前言 + 1
1-2 碳的同素異形體 + 2
1-2-1 無定型碳(Amorphous carbon) + 3
1-2-2 富勒烯(Fullerene) + 3
1-2-3 奈米碳管(Carbon nanotube) + 4
1-2-4 鑽石(Dimond) + 5
1-2-5 石墨(Graphite)與石墨烯(Graphene) + 5
1-3 石墨烯簡介 + 6
1-4 氧化石墨烯簡介 + 8
1-5 石墨烯之製備方法 + 9
1-5-1 膠帶剝離法(Mechanical exfoliation) + 9
1-5-2 熱裂解磊晶成長於碳化矽上(Epitaxial graphene on SiC surfaces after Graphitization) + 11
1-5-3 氧化石墨烯還原法(Oxidation) + 11
1-5-4 化學氣相沉積法(Chemical Vapor Deposition,CVD) + 15
1-5-5 固態碳源裂解法 + 21
1-6 石墨烯之轉移 + 21
1-7 石墨烯之應用 + 22
1-8 文獻回顧及研究動機 + 24
1-8-1 Graphene文獻回顧 + 24
1-8-2 研究動機 + 33
第二章 實驗儀器及原理 + 34
2-1 材料分析量測儀器 + 34
2-1-1 凝膠滲透層析儀(Gel Permeation Chromatography,GPC) + 34
2-1-2 熱重量分析儀(Thermogravimetric Analyzer,TGA) + 35
2-2 實驗製程儀器 + 36
2-2-1 多靶磁控濺鍍系統(Multi-Target Sputter) + 36
2-2-2 旋轉塗佈機(Spin coater) + 37
2-2-3 高溫爐(Furnace) + 38
2-3 薄膜表面分析儀器 + 39
2-3-1 表面輪廓儀(Surface Profiler) + 39
2-3-2 原子力量子顯微鏡 (Atomic Force Microscopy,AFM) + 40
2-3-3 軟物質專用穿透式電子顯微鏡(Transmission Electron Microscope,TEM) + 43
2-4 結構鑑定 + 44
2-4-1 拉曼光譜儀(Raman spectrum) + 44
2-4-2 傅立葉轉換紅外線光譜儀(FTIR) + 45
2-4-3 歐傑電子能譜儀(Auger Electron Spectroscopy)+ 46
2-5 薄膜特性量測儀 + 47
2-5-1 四點探針(Four-Point Probe) + 47
2-5-2 霍爾效應(Hall effect) + 48
2-5-3 光電光譜儀(Photoelectron Spectrometer,AC-2) + 48
第三章 實驗材料及流程 + 50
3-1 實驗材料 + 50
3-1-1 聚芳香醚高分子 + 50
3-2 實驗流程 + 52
3-2-1 不同表面型態之基板 + 52
3-2-2 氧化石墨製作流程 + 52
第四章 結果與討論 + 56
4-1 催化反應對氧化石墨薄膜特性之影響 + 56
4-1-1 成長機制 + 56
4-1-2 製備氧化石墨薄膜 + 56
4-1-3 表面分析(AFM) + 58
4-1-4 微觀分析(SAD) + 62
4-1-5 結構鑑定(FTIR、XPS) + 63
4-1-6 結論 + 65
4-2 材料結構對氧化石墨薄膜特性之影響 + 66
4-2-1 成長機制 + 66
4-2-2 製備氧化石墨薄膜 + 66
4-2-3 不同材料結構之表面分析(AFM) + 68
4-2-4 結論 + 69
4-3 鍛燒溫度對氧化石墨薄膜特性之影響 + 70
4-3-1 成長機制 + 70
4-3-2 製備氧化石墨薄膜 + 70
4-3-3 改變鍛燒溫度之表面分析(α-step 、AFM) + 71
4-3-4 結構鑑定(Raman、FTIR、XPS) + 72
4-3-5 薄膜電性量測(Four-Point Probe、Hall effect) + 76
4-3-6 P4、A8各項特性量測 + 78
4-3-7 薄膜特性量測(功函數) + 83
4-3-8 老化測試 + 85
4-3-9 結論 + 87

第五章 總結論 + 88
參考文獻 + 89
參考文獻 References
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306 (2004), 666.
[2] S. Iijima, Nature 354 (1991), 56.
[3] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324 (2009), 1312.
[4] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321 (2008), 385.
[5] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett.8 (2008), 902.
[6] K. I. Bolotin, K. J. Sikes, and Z. Jiang, Solid State Communications. 146 (2008), 351.
[7] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, Phys. Rev. Lett. 100 (2008), 016602.
[8] 工研院電子報,新碳時代-從奈米碳管到石墨烯,第10004期出報日: 2011/04/25.
[9] 世界上最薄的材料-98康熹化學報報(康熹文化事業股份有限公司). 2009-11, 11月號-洪偉修教授.
[10] W. S. Hummers, R. E. Offeman, Chem. Soc. 80 (1958), 1339.
[11] J. Hass, W. A. de Heer, and E. H. Conrad, J. Phys.: Condens. Matter 20 (2008), 323202.
[12] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312 (2006), 1191.
[13] D. R. Dreyer, S. Park, C.W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39 (2010), 228.
[14] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nature Nanotechnology 3 (2008), 538.
[15] D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nature, 3 (2008), 101.
[16] M. Chhowalla, K. P. Loh, Q. Bao, and G. Eda, Nature, 9 (2010), 1015.
[17] Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, Phys. Rev. B., 110 (2006), 8525.
[18] C. Y. Su, Xu Y, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, and L. J. Li, ACS Nano 4 (2010), 5285.
[19] P.R. Somani, S.P. Somani, M. Umeno, Chem. Phys. Lett., 430 (2006), 56.
[20] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, Appl. Phys. Lett., 93 (2008), 113103-1.
[21] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi , B. H. Hong, Nature, 457 (2009), 706.
[22] S. J. Chae, F. Gnes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. J. Shin, S. M. Yoon, J. Y. Choi, M. H. Park, C. W. Yang, D. Pribat, Y. H. Lee, Adv. Mater., 21 (2009), 2328.
[23] Y. U. Jung, S. Na, H. Kim, and S. J. Kang, J. Vac. Sci. Technol. A 30 (2012), 050604.
[24] Zhouying Zhao, John D. Fite, Pradeep Haldar, and Ji Ung Lee, American Institute of Physics, 101 (2012), 063305.
[25] D. Yu, Y. Yang, M. Durstock, J. B. Baek and L. Dai, ACS Nano, 4 (2010), 5633.
[26] Z. Sun, Z. Yan, J. Yao, E. Beitler, Yu Zhu, and J. M. Tour, Nature 468 (2010), 549.
[27] G. Ruan, Z. Sun, Z. Peng, and J. M. Tour, ACS Nano 5 (2011), 7601.
[28] Z. Yan, Z. Peng, Z. Sun, J. Yao, Yu Zhu, Z. Liu, P. M. Ajayan, and J. M. Tour, ACS Nano 5 (2011), 8187.
[29] Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, ACS Nano 5 (2011), 8241.
[30] Zhiyong Liu, Dawei He, Yongsheng Wang, Hongpeng Wu, Jigang Wang, Elsevier, 160 (2010), 1036.
[31] Minas M. Stylianakis, Emmanuel Stratakis, Emmanuel Koudoumas, Emmanuel Kymakis, and Spiros H. Anastasiadis, ACS Appl. Mater, 50 (2012), 4144.
[32] Jun Liu , Yuhua Xue, Yunxiang Gao, Dingshan Yu, Michael Durstock, and Liming Dai, Adv. Mater, 24 (2012), 2228.
[33] Shuping Pang, Yenny Hernandez, Xinliang Feng, and Klaus Müllen, Adv. Mater. 23 (2011), 2779.
[34] Lewis Gomez De Arco, Yi Zhang, Cody W. Schlenker, Koungmin Ryu, Mark E. Thompson, and Chongwu Zhou, ACS Nano 4 (2010), 2865.
[35] J. Hwang, H. K. Chio, J. Moon, T. Y. Kim, and J. Shin, Materials Research Bulletin 47 (2012), 2796.
[36] Slonczewski, J. C. & Weiss, P. R. Band, Phys. Rev., 109 (1958), 272.
[37] G. W. Semenoff, Phys. Rev. Lett., 53 (1984), 2449.
[38] M. Zheng, K. Takei, B. Hsia, H. Fang, X. Zhang, N. Ferralis, H. Ko, Y.L. Chueh, Y. Zhang, R. Maboudian, A. Javey, Appl. Phys. Lett., 96 (2010), 063110.
[39] J. D. Wood, G. P. Doidge, E. A. Carrion, J. C. Koepke, J. A. Kaitz, I. Datye, A. Behnam, J. Hewaparakrama, B. Aruin, Y. Chen, H. Dong, R. T. Haasch, J. W. Lyding and E. Pop, Nanotechnology, 26 (2015), 0553029.
[40] Z. Peng, Z. Yan, Z. Sun and J. M. Tour, ACS Nano, 5 (2011), 8241.
[41] Z. Y. Juang, C. Y. Wu, C. W. Lo, W. Y. Chen, C. F. Huang, J. C. Hwang, F. R. Chen, K. C. Leou and C. H. Tsai, Carbon, 47 (2009), 2026.
[42] F. Tuinstra, J. L. Koenig, J., Chem. Phys., 53 (1970), 1126.
[43] Wang, C., Wang, Y. L., Zhan, L., Yang, G. Z., Yang, J. H., Qiao, W. M., & Ling, L. C. Journal of Inorganic Materials, 27 (2012), 769.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.70.203
論文開放下載的時間是 校外不公開

Your IP address is 3.14.70.203
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code