Responsive image
博碩士論文 etd-0710115-140422 詳細資訊
Title page for etd-0710115-140422
論文名稱
Title
含需量反應之虛擬電廠調度規劃
Operation Planning of Virtual Power Plant with Demand Response
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
159
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-16
繳交日期
Date of Submission
2015-08-10
關鍵字
Keywords
虛擬電廠、需量反應、時間電價、再生能源、模型預測控制法、儲能設備
demand response, VPP, TOU price, renewable energy, MPC, BESS
統計
Statistics
本論文已被瀏覽 5677 次,被下載 814
The thesis/dissertation has been browsed 5677 times, has been downloaded 814 times.
中文摘要
隨著能源需求及環保意識的成長,人們開始尋找乾淨的能源,各國制定了許多法案來促進再生能源的發展,如太陽能、風力及水力等。但需求的成長在未來將對電力系統造成沉重的負擔,虛擬電廠的概念成為了解決這種困境的方法之一。虛擬電廠整合了供電端及需求端的資產運作,來滿足客戶在短期及長期的用電需求。運用先進的通訊、量測及自動化控制技術配合短期負載的變化進行設備的運轉排程,來滿足用戶之用電需求。長期而言,透過更有效的設備投資、整合分散式能源及需量反應等方案,可降低能源的需求,減少設備在尖峰時刻的運轉,以達到降低碳排放量的效果。
近年來,需求端的管理亦被重視,透過時間電價及需量反應等概念,使用戶根據電價的高低改變用電習慣,將非緊急用電移至離峰時段使用,如洗衣機、除濕機及烘碗機等。需量反應的概念為需求端管理的延伸,透過提供用戶回饋金的機制,要求用戶於尖峰負載時刻提供卸載服務,可降低系統在尖峰時刻超載的風險。
本文將建立虛擬電廠系統,配合既有的分散式能源,如太陽能及儲能設備等,配合時間電價機制進行儲能設備的調度,使電廠獲利增加;另一方面運用需量反應概念與用戶簽訂需量反應合約,提供用戶回饋金並要求用戶提供降載。透過不同情境的模擬,探討虛擬電廠在不同儲能設備成本、電價機制、用戶類型等因素所造成的調度影響。
Abstract
Owing to the increase of power demand and rising awareness of environmental protection, people start to adopt clean power. Many countries enact codes to promote the development of renewable energy, including photovoltaic, wind turbine and hydro generator. The growing demand has been a heavy burden on the power system. In order to meet the demand, the concept of virtual power plant has been proposed. The concept integrates the operation of supply-side and demand-side assets to meet customer demand for energy services in both the short-term and long-term. In short-term, virtual power plant makes extensive and sophisticated use of information technology, smart meter, automated control capabilities and electricity storage to match load fluctuations. The concept also treats long-term load reduction achieved through energy efficiency investments, distributed generation, and demand response.
Using real-time pricing and demand response schemes, customer energy usage can be charged according to tariff structure to move the non-critical demand to off-peak periods, such as washing machines, dehumidifiers and dish driers. Demand response is one of demand side management schemes. Through adequate incentive offers to customers, peak load demand can be reduced at rush hours, and customer bills can be reduced.
In this thesis, we build a virtual power plant model and use the concept of demand response and time of use pricing to control the distributed energy resources, such as battery energy storage system, to maximize the profits. A demand response contract is designed and different factors are taken into account in operation scheduling.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 相關文獻回顧 3
1.3 論文架構 10
第二章 結合需量反應之虛擬電廠 11
2.1 虛擬電廠之系統架構 11
2.2 太陽能發電 13
2.2.1太陽能隨機發電模型 16
2.3 儲能系統充放電模型 18
2.3.1 電池特性介紹 18
2.3.2 儲能電池等效模型 22
2.3.2儲能設備運轉成本 25
2.4 用戶用電模型 28
2.5 需量反應模型 29
2.5.1 需量反應簡介 29
2.5.2 需量反應執行時機 33
2.5.3 需量反應模型 35
2.6 時間電價方案 38
第三章 結合需量反應之虛擬電廠最佳化運轉管理 46
3.1 無需量反應之虛擬電廠運轉 47
3.1.1系統架構 47
3.1.2 最佳化運轉數學模型 48
3.2 含需量反應之虛擬電廠運轉 51
3.2.1系統架構 51
3.2.2 最佳化運轉數學模型 52
第四章 使用模型預測控制法之虛擬電廠運轉調度 57
4.1 模型預測控制法介紹 57
4.2 不含需量反應之虛擬電廠運轉 64
4.3含需量反應之虛擬電廠運轉 69
第五章 案例模擬與分析結果 73
5.1 無需量反應之虛擬電廠運轉 76
5.2 含需量反應之虛擬電廠運轉 87
5.3 應用模型預測控制法調度虛擬電廠運轉 123
第六章 結論與未來研究方向 133
6.1結論 133
6.2未來研究方向 136
參考文獻 138
參考文獻 References
[1] 吳再益、吳秀婉、陳玟如、張建隆、林唐裕,「電力市場自由化下需量反應制度之可行性研究」,台電工程月刊,683,78-101,2005年
[2] 陳開瑞、周哲豪、盧展南,「小型虛擬電廠概念實驗測試」,中華民過第三十三屆電力工程研討會,2012年,12月
[3] 王京明、張信生,「先進國家電業自由化推動績效之評估研究(+使用手冊)」,2007年,7月
[4] L. Gkatzikis, I. Koutsopoulos, T. Salonidis, “The Role of Aggregators in Smart Grid Demand Response Markets,” IEEE Journal on Selected Areas in Communications, vol.31, no.7, pp.1247,1257, July 2013.
[5] Yixing Xu, Le Xie, Chanan Singh, “Optimal Scheduling and Operation of Load Aggregator with Electric Energy Storage in Power Markets,” North American Power Symposium (NAPS), 2010 , pp.1,7, 26-28, Sept. 2010.
[6] M. A. Salmani, S. M. M. Tafreshi, H. Salmani, “Operation Optimization for a Virtual Power Plant,” IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE), pp.1,6, 28-30, Sept. 2009.
[7] D. Pudjianto, C. Ramsay, G. Strbac, “Virtual Power Plant and System Integration of Distributed Energy Resources ,” IET Renewable Power Generation, vol.1, no.1, pp.10,16, March 2007.
[8] M. Bragard, N. Soltau, S. Thomas, R. W. De Doncker, “The Balance of Renewable Sources and User Demand in Grids: Power Electronics for Modular Battery Energy Storage System,” IEEE Transactions on Power Electronics, vol.25, no.12, pp.3049,3056, Dec. 2010.
[9] 廖泳棠,「電動車充電站直流微電網電力調度研究」,國立中山大學電機系碩士畢業論文,2012年
[10] 張軒誌,「應用模型預測控制法於電動車充電站電能運轉規劃」,國立中山大學電機系碩士畢業論文,2014年
[11] K. Qian, C. Zhou, M. Allan, and Y. Yuan, “Modeling of Load Demand Due to EV Battery Charging in Distribution System,” IEEE Transactions on Power Systems, vol.26, no.2, pp.802,810, May 2011
[12] 劉鴻儒,「考量配電系統運轉之電動車充電站規劃研究」,國立中山大學電機系碩士畢業論文,2013年
[13] J. A. P. Lopes, F. J. Soares, P. M. R. Almeeida, “Identifying Management Procedures to Deal with Connection of Electric Vehicles in the Grid,” IEEE Bucharest PowerTech, vol., no., pp.1,8, June 28 2009, July 2009.
[14] M. Musio, A. Damiano, “A Virtual Power Plant Management Model Based on Electric Vehicle Charging Infrastructure Distribution,” 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp.1,7, 14-17, Oct. 2012.
[15] I. Kuzle, M. Zdrilić, H. Pandžić, “Virtual Power Plant Dispatch Optimization Using Linear Programming,” 10th International Conference on Environment and Electrical Engineering (EEEIC), pp.1,4, 8-11, May 2011.
[16] Z. A.Vale, H. Morais, H. Khodr, “Intelligent Multi-Player Smart Grid Management Considering Distributed Energy Resources and Demand Response,” IEEE Power and Energy Society General Meeting, pp.1,7, 25-29, July 2010.
[17] D. Unger, L. Spitalny, J. M . A. Myrzik, “Voltage Control by Small Hydro Power Plants Integrated into a Virtual Power Plant,” IEEE Energytech, pp.1,6, 29-31, May 2012.
[18] M. Petersen, J. Bendtsen, J. Stoustrup, “Optimal Dispatch Strategy for the Agile Virtual Power Plant,” American Control Conference (ACC), pp.288,294, 27-29, June 2012.
[19] B. Jansen, C. Binding, O. Sundström, D. Gantenbein, “Architecture and Communication of an Electric Vehicle Virtual Power Plant,” First IEEE International Conference Smart Grid Communications (SmartGridComm), pp.149,154, 4-6, Oct. 2010.
[20] P. Faria, Z. Vale, J. Soares, J. Ferreira, “Demand Response Management in Power Systems Using Particle Swarm Optimization,” IEEE Intelligent Systems, vol.28, no.4, pp.43,51, July-Aug. 2013.
[21] 王玟菁,吳建明,劉文雄,盧展南,「需量反應方案縱覽」,中華民過第三十五屆電力工程研討會,2014年,12月
[22] New York Independent System Operator, “Day-Ahead Demand Response Program Manual,” 2003.
[23] P. Faria, Z. Vale, “Demand Response Programs Definition Usion Demand Price Elasticity to Define Consumers Aggregation for an Improved Remuneration Structure,” 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE), pp.1,5, 6-9, Oct. 2013.
[24] M. Babar, T. P. I. Ahamed, A. Shah, E. A. Al-ammar, N. H. Malik, “Novel Algorithm for Aggregated Demand Response Strategy for Smart Distribution Network,” 3rd International Conference on Electric Power and Energy Conversion Systems (EPECS), pp.1,5, 2-4, Oct. 2013
[25] A. Mnatsakanyan, S. Kennedy, “Optimal Demand Response Bidding and Pricing Mechanism: Application for a Virtual Power Plant,” 1st IEEE Conference on Technologies for Sustainability (SusTech), pp.167,174, 1-2, Aug. 2013.
[26] C. Salon, O. Huet, F. Blanc, “How DSO Could Facilitate System Optimization in New Market Mechanisms for Distributed Resources,” 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), pp.1,4, 10-13, June 2013.
[27] P. Sandoy, “The Role of Distribution System Operators(DSOs) as Information Hubs,” EURELECTRIC Network Committee, 2010
[28] K. Zhou, L. Cai, “A Dynamic Water-filling Method for Real-Time HVAC Load Control Based on MPC,” IEEE Transactions on Power Systems, vol.30, no.3, pp.1405,1414, May 2015.
[29] E. Mayhorn, K. Kalsi, M. Elizondo, W. Zhang, S. Lu, N. Samaan, K. Butler-Purry, “Optimal Control of Distributed Energy Resources using Model Predictive Control,” IEEE Power and Energy Society General Meeting, pp.1,8, 22-26, July 2012.
[30] E. Mayhorn, K. Kalsi, J. Lian, M. Elizondo, “Model predictive Control-based Optimal Coordination of Distributed Energy Resources,” 46th Hawaii International Conference on System Sciences (HICSS), pp.2237,2244, 7-10, Jan. 2013.
[31] W. Su, J. Wang, K. Zhang, A. Q. Huang, “Model Predictive Control-based Power Dispatch for Distribution System Considering Plug-in Electric Vehicle Uncertainty,” Electric Power Systems Research, vol.106, pp.29-35, Jan. 2014.
[32] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar Cell Efficiency Tables(version 43),” Wiley Online Library, 2014
[33] G. Carr,“Alternative Energy Will No Longer be Alternative,” 經濟學人, www.economist.com/news/21566414-alternative-energy-will-no-longer-be-alternative-sunny-uplands, 2013
[34] 經濟部能源局太陽光電資訊網,http://solarpv.itri.org.tw/page1.html
[35] M. G. Villalva and J. R. Gazoli, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Transactions on Power Electronics, vol.24, no.5, pp.1198,1208, May 2009.
[36] M. G. Villalva and J. R. Gazoli, “Modeling and Circuit-Based Simulation of Photovoltaic Arrays,” COBEP Brazilian Power Electronics Conference, pp.1244,1254, Sept. 27 2009-Oct. 1 2009.
[37] 國立中山大學能源整合資訊系統,140.117.148.13/Default.aspx
[38] 儲能系統應用及其發展趨向之分析,taise.org.tw/uploadfile/image/7.pdf
[39] Battery University, http://batteryuniversity.com/learn/article/cost_of_power
[40] H. L. Chan, and D. Stanto, “A New Battery Model for use with Battery Energy Storage Systems and Electric Vehicles Power Systems,” IEEE Power Engineering Society Winter Meeting, vol.1, no., pp.470,475, 2000.
[41] J. Petersen, ”Lithium-ion Batteries:9 Years of Price Stagnation,” 2009.
[42] L. Gaines, and R. Cuenca, “Cost of Lithium-Ion Batteries for Vehicles,” Center for Transportation Research, Energy Systems Division, 2000.
[43] J. D. Dogger, and B. Roossien, “Characterization of Li-Ion Batteries for Intelligent Management of Distributed Grid-Connected Storage,” IEEE Transactions on Energy Conversion, vol.26, no.1, pp.256,263, March 2011.
[44] C. Zhou, K. Qian, M. Allan, and W. Zhou, “Modeling of the Cost of EV Battery Wear Due to V2G Application in Power Systems,” IEEE Transactions on Energy Conversion, vol.26, no.4, pp.1041,1050, Dec. 2011.
[45] S. Fan, R. Hyndman, “The Prcie Elasticity of Electricity Demand in South Australia,” Business and Economic Forecasting Unit, vol.39, no.6, pp.3709-3719, June 2010.
[46] 台灣電力公司,「台灣電價表」,www.taipower.com.tw
[47] Ausgrid Inc,“Ausgrid electricity price,” www.asugrid.com.au
[48] Southern California Edison, “ SCE electricity price,” www.sce.com
[49] Origin Inc, “Origin Inc electricity price,” www.originenergy.com.au/7/At-home
[50] Ontario Energy Board, “OEB electricity price,” www.ontarioenergyboard.ca
[51] Ameren Illinois, “Power Smart Pricing” , http://www.powersmartpricing.org/
[52] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model Predictive Heuristic Control : Applaction to Industrial Processes,” Automatica, vol.14, no.5, pp.413-428, Sept. 1978.
[53] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Algorithmic Control of Industrial Processes,” In 4th IFAC symposium on Identification and System Parameter Estimation, 1976
[54] C. R. Cutler, and B. C. Ramaker, “Dynamic Matrix Control-a Computer Control Algorithm,” In Automatic Control Conference, 1980
[55] M. Morari, “Advances in Model-Based Predictive Control,” chapter Model Predictive Control: Multivariable Control Technique of Choice in the 1990s Oxford University Press, 1994
[56] 模型預測控制法,www.cc.ntut.edu.tw/~jcjeng/Model Predictive Control.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code