Responsive image
博碩士論文 etd-0710116-095207 詳細資訊
Title page for etd-0710116-095207
論文名稱
Title
雷射活化非晶矽對於不同像素間距在微輻射紅外線感測器特性之影響
The Effect of Laser Annealing on Amorphous Silicon with Different Pixel Pitch Structure for Far-Infrared Ray Bolometer Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-10
關鍵字
Keywords
遠紅外線、輻射熱感測器、非晶矽、雷射活化、電阻溫度係數
bolometer, amorphous silicon, laser annealing, far-infrared ray, temperature coefficient of resistance (TCR)
統計
Statistics
本論文已被瀏覽 5708 次,被下載 61
The thesis/dissertation has been browsed 5708 times, has been downloaded 61 times.
中文摘要
本論文以雷射活化非晶矽(α-Si)在不同像素間距下,對於微輻射紅外線感測器特性之影響為主要研究。元件採用非晶矽作為感測層,並具有懸浮結構以形成共振腔。懸浮結構可提高非晶矽感測層之絕熱效果,而共振腔可增加輻射吸收能力,以增加元件感測能力。非晶矽具有較低的製作成本以及簡單的製程,又與CMOS製程相容,因此可透過大量生產降低元件成本,提升產品的競爭力。非晶矽之電阻值較高,藉由兩個製程使非晶矽電阻達到降低之效果,以氮化鈦(TiN)作為輔助吸收層並透過與非晶矽感測層接觸降低電阻值;以雷射活化非晶矽使晶格重新排列降低電阻。透過不同的光罩設計,形成兩種leg且具有不同像素間距。leg分為A、B兩種,A為normal leg,B為double leg。像素間距由15μm至50μm,每5μm為一個元件,共16種元件。
分別對兩種設計在不同像素間距之元件使用IV及CV電性量測系統,搭配變溫系統控制腔體溫度。從室溫開始,每五度量測一次,繪製電阻與溫度曲線圖。並以趨勢線公式搭配電阻溫度係數公式計算出電阻溫度係數(temperature coefficient of resistance, TCR)。實驗結果發現,A設計之元件,在不同像素下,電阻溫度係數皆有傑出的表現。B設計之元件,隨著像素間距增加下,電阻溫度係數有逐漸增加之趨勢。最後架設光源進行檢測,由結果發現隨著照光時間的增加,電阻會持續的下降。待光線移開之後,電阻逐漸恢復,確認微輻射感測器能接收輻射運作。
Abstract
In this study, we focus on the effect of different pixel pitch structure of amorphous silicon with laser annealing for far-infrared ray bolometer. The sensing layer of the devices is amorphous silicon, which has low production cost and simple fabrication process. The suspension structure is designed for forming resonance cavity with better insulation property and more radiation absorption thus superior device performance. Two following processes are implemented for reducing the resistance of amorphous silicon: (1) Titanium nitride (TiN)contacts with the amorphous silicon sensing layer. TiN can help not only lowering the resistance but also assisting absorption. (2) Laser annealing can rearrange the lattice structure and leads to a smaller resistance. We also design different masks with two types of leg pattern and several pixel pitches.
We measure the devices’ characteristics and analyze their temperature coefficient of resistance (TCR) in detail. Experimental results show that TCR in different pixel pitches of normal lag pattern all have good and comparable performances. While TCR of another double leg pattern demonstrates rising trend with increasing pixel pitch. Finally, all the devices are tested with light source. The resistances of the devices decline continually under illumination. When the light moves out, they go back to the initial value.
目次 Table of Contents
審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 xi
第一章導論 1
1.1 研究目的與動機 1
1.2 論文架構 2
第二章紅外線感測器 3
2.1 紅外線 3
2.2 黑體輻射 3
2.3 紅外線感測系統 4
2.3.1 紅外線感測器種類與比較 4
2.4 熱能式紅外線感測器種類與比較 5
a.焦電型(Pyroelectric) 5
b.熱敏電阻型(Bolometer) 5
c.熱電堆(Thermopile) 7
第三章實驗儀器與步驟 8
3.1 設備簡介 8
3.1.1 成長系統 8
3.1.2 檢測儀器 10
3.2 元件製作步驟 11
第四章結果與討論 15
4.1 不同像素間距之電阻溫度係數分析 15
4.2 照光測試 16
第五章結論與未來展望 17
5.1 結論 17
5.2 未來展望 17
參考文獻 18
附圖 20
附表 66
參考文獻 References
[1] B. Meyer and T. Hoelter, “Uncooled radiometric camera performance,”Infrared Detectors and Focal Plane Arrays V, vol. 3379, pp. 69-78, July. 1998.
[2] R. S. Balcerak, “Uncooled infrared sensors: rapid growth and future perspective,”Infrared Detectors and Focal Plane Arrays VI, pp. 36-39, July. 2000.
[3] B. Wiecek, “Cooling and shielding systems for infrared detectors - requirements and limits,”2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 619-622, Sept. 2005. AMA Conferences 2013, May. 2013.
[4] N. Neumann and V. Banta, “Comparison of Pyroelectric and Thermopile Detectors,”AMA Conferences 2013, pp. 139-143, May. 2013.
[5] F. Niklaus, C. Vieider, and H. Jakobsen, “MEMS-Based uncooled infrared bolometer Arrays - A review,”Mems/Moems Technologies and Applications Iii, vol. 6836, Jan. 2008.
[6] P. E. Howard, J. E. Clarke, W. J. Parrish, and J. T. Woolaway Ii, “Advanced high-performance 320x240 VOxmicrobolometer uncooled IR focal plane,”Infrared Technology and Applications XXV, vol. 3698, pp. 131-136, July. 1999.
[7] Antonio Rogalski (2011).Radiometry, Infrared Detectors 2nd ed. (pp. 2-21). CRC Press.
[8] Mahmoud Massoud (2005). Engineering thermofluids: thermodynamics, fluid mechanics, and heat transfer. Springer.p. 568.
[9] F.J. Crawford, “Electro-optical sensors overview,” IEEE Aerospace and Electronic Systems Magazine, vol. 13, no. 10, pp. 17-24, Oct. 1998.
[10] G. D. Skidmore, C. J. Han, and C. Li, “Uncooled Microbolometers at DRS and Elsewhere Through 2013,”Image Sensing Technologies: Materials, Devices, Systems, and Applications, vol. 9100, May. 2014.
[11] Antonio Rogalski (2011).Infrared Detector Characterization, Infrared Detectors 2nd ed. (pp. 23-40). CRC Press.
[12] M. Moghavvemi, “Pyroelectric infrared sensor for intruder detection,”TENCON 2004. 2004 IEEE Region 10 Conference, Nov. 2004.
[13] Y. S. Yoon, V. B. Samoilov and S. V. Kletsky, “Dynamic Response Analysis of Pyroelectric Sensitive Element for Thermal Imaging,”IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 50, pp. 461-465, April. 2003.
[14] S. Eminoglu, M. Y. Tanrikulu and T. Akin, “A Low-Cost 128 × 128 Uncooled Infrared Detector Array in CMOS Process,”Journal of Microelectromechanical Systems, vol. 17, pp. 20-30, Feb. 2008.
[15] S. Becker, P. Imperinetti, J. J. Yon, J. L. Ouvrier-Buffet, V. Goudon, A. Hamelin, C. Vialle, A. Arnaud, “Latest pixel size reduction of uncooled IR-FPA at CEA, LETI,”Electro-Optical and Infrared Systems: Technology and Applications IX, vol. 8541, Oct. 2012.
[16] C. Li, G. D. Skidmore, and C. J. Han, “Uncooled VOx Infrared Sensor Development and Application,”Infrared Technology and Applications Xxxvii, vol. 8012, May. 2011.
[17] Antonio Rogalski (2011). Bolometer, Infrared Detectors 2nd ed. (pp. 104-130). CRC Press.
[18] D. S. Tezcan, F. Kocer and T. Akin, “AnUncooledMicrobolometer Infrared Detector In Any Standard CMOS Technology,”10th International Conference on Solid-State Sensors and Actuators (Transducers'99), pp. 610-613, June. 1999.
[19] F. Niklaus, C. Jansson, A. Decharat, J. E. Källhammer, H. Pettersson, and G. Stemme, “Uncooled Infrared Bolometer Arrays Operating in a Low to Medium Vacuum Atmosphere: Performance Model and Tradeoffs,” Infrared Technology and Applications XXXIII, vol. 6542, April. 2007.
[20] Ban-Li Wu, “Fabrication of a novel uncooled infrared microbolometer and low-frequency-noise analysis,” June. 2015.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code