Responsive image
博碩士論文 etd-0710116-122048 詳細資訊
Title page for etd-0710116-122048
論文名稱
Title
幾何形狀對於微輻射紅外線感測器在電阻和溫度係數上之影響
The Effect of Leg Geometry on Resistance and Temperature Coefficient of Resistance for Far-Infrared Ray Bolometer Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-10
關鍵字
Keywords
靈敏度、電阻溫度係數、非晶矽、微機電製程技術、微輻射紅外線感測器
temperature coefficient of resistance, sensitivity, microbolometer, lithography, etching
統計
Statistics
本論文已被瀏覽 5674 次,被下載 136
The thesis/dissertation has been browsed 5674 times, has been downloaded 136 times.
中文摘要
微輻射紅外線感測器的微縮將造成元件靈敏度降低。本論文旨在探討支腳(Leg)幾何形狀,對於以非晶矽作為感測層材料之微輻射紅外線感測器特性的影響。透過最佳化的支腳設計,使微輻射紅外線感測器於微縮過程中同時得到優化之靈敏度。吾人利用微機電製程技術配合六道光罩製作微輻射感測器元件。藉由不同光罩,將感測器支腳定義為normal leg(type A)、double leg(type B)與half leg(type C)三種設計。同時定義不同的元件尺寸,由15 um至50 um,以5 um為間距,有八種不同的元件尺寸。吾人取元件尺寸為30 um、40 um、45 um和50 um的三種支腳設計元件深入討論,探討此12種元件在電阻與電阻溫度係數(TCR)上的表現,以找出最適合微輻射感測器的支腳設計。
  此外,在關鍵製程中利用光學顯微鏡(OM)和聚焦離子束(FIB)系統進行製程檢測,確認微影與蝕刻製程的正確性,以提高元件良率。元件電性則使用Agilent B1500A半導體參數量測儀進行量測,並利用變溫系統控制量測載台的溫度。由實驗結果發現,在電阻特性上,大部分元件的電阻值為數個MΩ,且在相同元件尺寸下,type B的電阻值最大、type A次之、type C為最小;在TCR特性上,大部分元件的TCR都有-2%/oC以上,在相同元件尺寸下,type A的TCR最高、type B次之、type C為最低。
  歸納不同設計元件的量測數據,吾人發現type A(normal leg)為最佳的支腳設計。此支腳設計有適當的電阻值與絕熱能力,且其擁有較高的TCR值,因此應用於微縮的微輻射紅外線感測器可獲得優化之靈敏度,以提升單一元件的感測能力。
Abstract
Pixel size scaling down of infrared microbolometer will cause reduction in its sensitivity. In this thesis, we investigate the effect of leg geometry on electrical characteristic for the device. Due to the optimal leg design, the infrared microbolometer can reduce its pixel size and maintain an excellent sensitivity simultaneously. We use MEMS processing technology with six masks to produce microbolometer device. The devices’ legs have been defined as normal leg (type A), double leg (type B), and half leg (type C) three different designs by various masks. Different device lengths from 15 um to 50 um are fabricated for each leg design. We choose device length of 30 um, 40 um, 45 um and 50 um to discuss in detail. The electrical resistance and TCR (temperature coefficient of resistance) of 12 different devices are well studied.
In addition, we inspect key processes by optical microscope (OM) and focused ion beam (FIB) to confirm the accuracy of lithography and etching. Agilent B1500A semiconductor parameter measuring instrument is applied to measure electrical characteristic of the devices. Temperature of the samples is controlled by variable temperature system. Based on the experimental results, the resistances of most devices are several MΩ. Under the same device length, type B design has a maximum resistance. However, type A design has a maximum TCR value, which of most devices are above -2% /oC.
As a result, type A (normal leg) design has the best performance among all designs. It has suitable resistance value, thermal isolation, and higher TCR value. Thus applying the design to pixel size reduction can optimize the sensitivity.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3論文架構 3
第二章 基礎理論 4
2.1輻射理論 4
2.1.1黑體輻射 4
2.1.2紅外線簡介 6
2.2元件基礎理論 7
2.2.1紅外線感測器分類 7
2.2.2微輻射感測器之介紹 10
2.2.2.1元件感測原理 11
2.2.2.2結構種類 11
2.2.2.3感測材料種類 13
2.2.3參數討論 15
第三章 儀器使用和元件製程 18
3.1感測器成長系統 18
3.1.1 FSE Cluster PVD-多層金屬濺鍍系統 18
3.1.2 Oxford PECVD-電漿輔助化學氣相沉積系統 20
3.1.3高密度電漿化學氣相沉積系統(HDPCVD) 20
3.1.4多功能後段蝕刻機 21
3.1.5電子束離子束雙束系統(FIB) 22
3.1.6乾式光阻去除機(Ozone asher) 22
3.2感測器量測系統 23
3.2.1 Agilent B1500A半導體參數量測儀 23
3.2.2變溫系統 23
3.3元件製程 24
3.3.1光罩使用 24
3.3.2製程步驟 26
3.3.3製程說明 31
3.4元件結構 32
3.5量測實驗 33
第四章 結果與討論 34
4.1元件設計介紹 34
4.2電阻特性 35
4.3電阻溫度係數特性 35
4.4實驗結果分析 36
4.5照光量測實驗 37
第五章 結論與未來展望 38
5.1結論 38
5.2未來展望 39
參考文獻 40
附表 43
附圖 49
參考文獻 References
[1] Antoni Rogalski, “ Infrared Detectors 2nd ed,” Taylor & Francis Group, 2011.
[2] F. Niklaus, C. Jansson, A. Decharat, J. Källhammer, H. Pettersson, and G. Stemme, “ Uncooled Infrared Bolometer Arrays Operating in a Low to Medium Vacuum Atmosphere: Performance Model and Tradeoffs,” Infrared Technology and Applications XXXIII, Vol. 6542, 2007.
[3] S. Becker, P. Imperinetti, J. Yon, J. Ouvrier-Buffet, V. Goudon, A. Hamelin,
C. Vialle, and A. Arnaud, “ Latest pixel size reduction of uncooled IR-FPA at CEA, LETI,” Electro-Optical and Infrared Systems: Technology and Applications IX,
Vol. 8541, 2012.
[4] C. J. Alicandro, and R. W. DeMarco, “ 1024 x 768 XGA Uncooled Camera Core achieves new levels of performance in a small package,” Infrared Technology and Applications XXXVII, Vol. 8012, 2011.
[5] K. V. Chizh, V. A. Chapnin, V. P. Kalinushkin, V. Y. Resnik, M. S. Storozhevykh, and V. A. Yuryev, “ Metal silicide/poly-Si Schottky diodes for uncooled microbolometers,” Nanoscale Research Letters, Vol. 8, 2013.
[6] F. Niklaus, C. Vieider, and H. Jakobsen, “ MEMS-Based Uncooled Infrared Bolometer Arrays – A Review,” MEMS/MOEMS Technologies and Applications III, Vol. 6836, 2007.
[7] Xing-Ming Liu, Hua-Jun Fang, and Li-Tian Liu, “ Study on new structure uncooled a-Si microbolometer for infrared detection,” Microelectronics Journal, Vol. 38, 2007.
[8] C. Trouilleau, B. Fièque, S. Noblet, F. Giner, D. Pochic, A. Durand, P. Robert,
S. Cortial, M. Vilain, J.L. Tissot, and JJ. Yon, “ High-performance uncooled amorphous silicon TEC less XGA IRFPA with 17µm pixel-pitch,” Infrared technologies and applications XXXV, Vol. 7298, 2009.
[9] A. Tanaka, S. Matsumoto, N. Tsukamoto, S. Itoh, K. Chiba, T. Endoh, A. Nakazato, K. Okuyama, Y. Kumazawa, M. Hijikawa, H. Gotoh, T. Tanaka, and N. Teranishi, “ Infrared focal plane array incorporating silicon IC process compatible bolometer,” IEEE TED, Vol. 43, 1996.
[10] F. Niklaus, J. Pejnefors, M. Dainese, M. Haggblad, P. Hellstrom, J. Wallgren, and G. Stemme, “ Characterization of transfer-bonded silicon bolometer arrays,” Infrared Technology and Applications XXX, Vol. 5406, 2004.
[11] P. Neuzil, Yong Liu, Han-Hua Feng, and Wenjiang Zeng, “ Micromachined bolometer with single-crystal silicon diode as temperature sensor,” IEEE EDL,
Vol. 26, 2005.
[12] D. F. Murphy, M. Ray, A. Kennedy, J. Wyles, C. Hewitt, R. Wyles, E. Gordon,
T. Sessler, S. Baur, D. Van Lue, S. Anderson, R. Chin, H. Gonzalez, C. Le Pere, and S. Ton, “ High sensitivity 640 x 512 (20μm pitch) microbolometer FPAs,” Infrared Technology and Applications XXXII, Vol. 6206, 2006.
[13] S. Eminoglu, M. Y. Tanrikulu, and T. Akin, “ A Low-Cost 128 x 128 Uncooled Infrared Detector Array in CMOS Process,” Journal of Microelectromechanical Systems, Vol. 17, 2008.
[14] M. L. Hai, M. Hesan, J. Lin, Q. Cheng, M. Jalal, A. J. Syllaios, S. Ajmera, and
M. Almasri, “ Uncooled silicon germanium oxide (Si[sub]x[/sub]Ge[sub]y[/sub]O[sub]1-x-y[/sub]) thin films for infrared detection,” Infrared Technology and Applications XXXVIII, Vol. 8353, 2012.
[15] D. Fujisawa, T. Maegawa, Y. Ohta, Y. Kosasayama, T. Ohnakado, H. Hata,
M. Ueno, H. Ohji, R. Sato, H. Katayama, T. Imai, and M. Ueno, “ Two-million-pixel SOI diode uncooled IRFPA with 15µm pixel pitch,” Infrared Technology and Applications XXXVIII, Vol. 8353, 2012.
[16] G. D. Skidmore, C. J. Han, and Chuan Li, “ Uncooled microbolometers at DRS and elsewhere through 2013,” Image Sensing Technologies: Materials, Devices, Systems, and Applications, Vol. 9100, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code