Responsive image
博碩士論文 etd-0710116-163215 詳細資訊
Title page for etd-0710116-163215
論文名稱
Title
CuGaSe2/Si異質結構太陽電池的製作
Fabrication of CuGaSe2/Si heterostructures for solar-cell applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-29
繳交日期
Date of Submission
2016-08-11
關鍵字
Keywords
CuGaSe2磊晶、CuGaSe2/Si異質結構太陽電池、分子束蒸鍍、方向性晶域結構
Molecular beam deposition, orientation domain structure, CuGaSe2 epitaxy, CuGaSe2/Si heterojunction solar cell
統計
Statistics
本論文已被瀏覽 5679 次,被下載 441
The thesis/dissertation has been browsed 5679 times, has been downloaded 441 times.
中文摘要
本研究中,先以三源共蒸鍍法(Three source co-evaporation)並藉由化學組成控制成長近定比組成(near-stoichiometry)之CuGaSe2(簡稱CGSe)多晶薄膜。電阻率隨富銅(Cu-rich)到富鎵(Ga-rich)相區由3.7x10-1 -Ω‧cm 增至7.4x104 Ω‧cm,X-ray繞射分析結果確定薄膜為單一相。實驗中也發現薄膜表面殘存的Cu-Se導電相有助於促進CGSe與Mo金屬電極形成良好的歐姆接觸(Ohmic Contact)。
接著,在n型 Si (100)基板上成長Cu-rich CuGaSe2(p型CGSe)磊晶薄膜,XRD繞射分析結果顯示所製備出的CGSe薄膜其c軸是平行基板方向成長而形成方向性晶域結構(Orientation domain structure),產生此晶域結構的原因為晶格不匹配程度所導致的。
由XRD分析結果亦可發現CGSe薄膜在(400)的繞射峰較為寬廣且為不對稱,我們推論可能是製程溫度(550℃)造成CGSe薄膜和Si在界面處有著一相互擴散(interdiffusion)的現象發生,經由歐傑縱深成分分析結果證實Si明顯地擴散進入富銅CGSe薄膜裡,Si取代Ga會造成n型摻雜而影響原為p型的CGSe轉為傾向n型,致使在製作p-CuGaSe2/n-Si異質結構太陽電池時不利於P-N接面的形成。因此,未來可採用低溫製程來製備CGSe薄膜以解決高溫製程所衍生的問題。

關鍵詞:分子束蒸鍍、方向性晶域結構、CuGaSe2磊晶、CuGaSe2/Si異質結構太陽電池
Abstract
For the composition control and testing electric properties, polycrystalline CuGaSe2 (CGSe) films with near-stoichiometric compositions were deposited by
three-source co-evaporation on glass without the substrate rotation. XRD analysis veried that the film is single phase with the chalcopyrite structure. From Cu-rich to Ga-rich regions for the film grown on a glass substrate,the film resistivities varied from 3.7x10-1 Ω‧cm to 7.4x104 Ω‧cm. Further experiments on the formation of Ohmic contacts onto CGSe films indicated that the remaining Cu-Se phase on the surface of Cu-rich CGSe could improve the contact properties for the film attached with Mo metal electrodes.
Since the successful epitaxial growth should be demonstrated prior to device fabrication, Cu-rich CGSe(p-type CGSe) films were grown on (100) n-type Si wafers.XRD analysis reveal that the c-axis of tetragonal unit cell aligned parallel to the substrate surface to lower the strain energy and thus leaded to the formation of orientation domain structure. For the films grown at 550℃, the XRD peak of CGSe was broden and asymmetric indicating an interduffusion at the CGSe/Si interface. Auger depth profiling showed that a conderable amount of Si was diffused into CGSe. Considering in a Cu-rich CGSe that Si might incorporate into the lattice site of Ga and became as a donor, which could compensate the acceptor in p-type CGSe. This would seriously degrade the junction properties of p-CGSe/n-Si device structure. It is strongly suggested that a low-temperature process such as photo-assited MBE should be employed for the film growth.

Keywords:Molecular beam deposition,orientation domain structure,CuGaSe2 epitaxy, CuGaSe2/Si heterojunction solar cell
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 導論 1
1.1 前言 1
1.2 太陽電池原理 2
1.3 矽基太陽電池 6
1.4 研究動機與目的 9
1.5 實驗流程規劃 12
第二章 文獻回顧 13
2.1 CuGaSe2(CGSe)之材料性質、相圖及薄膜成長 13
2.2 CuGaSe2(CGSe)薄膜反應機制 16
2.3 CuGaSe2(CGSe)本質點缺陷 17
第三章 實驗製程與分析儀器介紹 22
3.1 基板處理 22
3.2 分子束蒸鍍系統 23
3.3 分子束源瓶、溫控器及石英震盪晶片 24
3.4 平行濺鍍系統 25
3.5 分析儀器介紹 27
3.5.1 X-ray繞射分析儀(X-ray Diffraction) 27
3.5.2 四點探針(Four-Point Probe) 28
3.5.3 場發射型掃描式電子顯微鏡(Field-Emission SEM) 28
3.5.4 歐傑電子能譜儀(Auger Electron Spectroscopy) 29
3.5.5 模擬光源與I-V量測 29
第四章 實驗結果與討論 30
4.1 元件模擬計算結果 30
4.1.1 結晶矽(n型Si)搭配CuGaSe2(p型CGSe)太陽電池元件模擬 31
4.2 製備近定比組成之CuGaSe2薄膜 34
4.3 近定比組成的CuGaSe2薄膜與鉬(Mo)金屬電極之接觸特性 37
4.4 矽基板上製備Cu-rich CuGaSe2(p型CGSe)磊晶薄膜 39
第五章 結論 46
第六章 參考文獻 47
參考文獻 References
[1] http://www.nrel.gov/ncpv/
[2] 王孟傑., “太陽光電市場現況與未來趨勢,” 工業材料雜誌,284 (2010).
[3] H. Tasaki, W. Y. Kim, M. Halledt, M. Konagai and K. Takahashi., “Computer Simulation Model of the Effects of Interface States on High-Performance Amorphous Silicon Solar Cells,” Journal of Applied Physics,63, 550 (1988).
[4] Yiming Liu, Yun Sun, Wei Liu,and Jianghong Yao., “Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells: HCT(heterojunction with compound thin-layer),” Royal Society of Chemistry,16, 15400-15410 (2014).
[5] Panasonic Corporation., “Panasonic solar cell achieves world's highest energy conversion efficiency of 25.6%,” Phys Org, (2014).
[6] 蕭睿中、陳建勳、林景熙、徐偉智、葉芳耀., “高效率異質介面矽基太陽電池技術介紹,” 工業材料雜誌,281 (2010).
[7] S. Ishizuka, A. Yamada, P. J. Fons, Y. Kamikawa-Shimizu, H. Komaki, H. Shibata, and S. Niki., “Buried p-n junction formation in CuGaSe2 thin-film solar cells,” Applied Physics Letters,104, 031606 (2014).
[8] 林松斌., “Epitaxial Growth of CuInSe2 Thin Films:Microstructure Control and annealing Behaviors,” 國立中山大學材料所博士論文, (1995).
[9] Karl W. Böer and Udo W. Pohl., “The Structure of Semiconductors,” Semiconductor Physics, (2014).
[10] 陳瑋., “Epitaxial Growth of CuGaSe2 Thin Film,” 國立中山大學材料所碩士論文, (1995).
[11] J. Tuttle, D. Albin, J. Goral, C. Kennedy and R. Noufi., “Effects of composition and substrate temperature on the electro-optical properties of thin-film CuInSe2 and
CuGaSe2,” Solar Cells,24, 67-69 (1988).
[12] J. C. Mikkelsen., “Ternary phase relations of the chalcopyrite compound CuGaSe2,” Journal of Electronic Materials,10, 3 (1981).
[13] S. Chichibu, Y. Harada, M. Uchide, T. Wakiyama, S. Matsumoto, S. Shirakata, S. Isomura and H. Higuchi., “Heteroepitaxy and characterization of CuGaSe2 layers grown by low-pressure metalorganic chemical-vapor deposition,” Journal of Applied Physics, 76, 3009 (1994).
[14] Andrew M. Gabor, John R. Tuttle, David S. Albin, Miguel A. Contreras, Rommel Noufi and Allen M. Herman., “High-efficiency CuInxGa1-xSe2 solar cells made from
(Inx,Ga1-x)2Se3 precusor films,” Applied Physics Letters,65, 198 (1994).
[15] S. Shirakata, K. Morita and S. Isomura., “Preparation of CuGaSe2 Heteroepitaxial Layers by Metalorganic Moleculr Beam Epitaxy,” Japanese Journal of Applied Physics
,33, 739-742 (1994).
[16] M. Nishitani, T. Negami, M. Terauchi and T. Hirao., “Preparation and Characterization of CuInSe2 Thin Films by Molecular-Beam Deposition Method,” Japanese Journal of Applied Physics,31, 192-196 (1992).
[17] 蔡坤益., “Improved quality of CuGaSe2 epitaxial thin film,” 國立中山大學材料所碩士論文, (1999).
[18] A. Catalano., “Polycrystalline thin-film technologies:Status and prospects,” Solar Energy Materials and Solar Cells,41/42, 205-217 (1996).
[19] R. A. Mickelsen and Wen S. Chen., “High photocurrent polycrystalline thin film CdS/CuInSe2 solar cell,” Applied Physical Letters,36, 371-373 (1980).
[20] 古俊能., “A study on Growth and Properties of Epitaxial CuGaSe2 Thin Films,” 國立中山大學材料所博士論文, (1999).
[21] Betty Lise Anderson and Richard L. Anderson., 半導體元件概論, 台北縣:全華圖書, (2008).
[22] PV EDUCATION.ORG, Intrruction 8.5 Lifetime →Bulk Lifetime.
[23] F. Luckert, M. V. Yakushev, C. Faugeras, A. V. Karotki, A. V. Mudryi and R. W. Martin., “Diamagnetic shift of the A free exciton in CuGaSe2 single crystals,” Applied Physics Letters,97, 162101 (2010).
[24] E. S. Machlin., “The effects of structure on properties in thin films,” Materials Science in Microelectronics Volume Ⅱ,17 (2006).
[25] M. Fujita, A. Kawaharazuka, Y. Horikoshi., “Characteristics of CuGaSe2 layers grown on GaAs substrates,” Journal of Crystal Growth,378, 154-157 (2013).
[26] P. Singh, R. Gautam, S. Sharma, S. Kumari, A. S.Verma., “Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers,” Material Science in Semiconductor Processing,42, 288-302 (2016).
[27] I. Balberg, D. Albin and R. Noufi., “Mobilitylifetime products in CuGaSe2,” Applied Physics Letters,54, 1244 (1989).
[28] A. Amara, W. Rezaiki1, A. Ferdi1, A. Hendaoui1, A. Drici1, M. Guerioune,
J. C. Bernède and M. Morsli., “Electrical properties of CuGaSe2 single crystals and polycrystalline coevaporated thin films,” Physica Status Solidi,204, 1138-1146 (2007).
[29] 施敏、李明逵., 半導體元件物理與製作技術, 國立交通大學出版社, (2013).
[30] Yu-Jun Zhao, Clas Persson, Stephan Lany and Alex Zunger., “Why can CuInSe2 be readily equilibrium-doped n-type but the wider-gap CuGaSe2 cannot?,” Applied Physics Letters,85, 5860 (2004).
[31] S. Thiru, M. Fujita, A. Kawaharazuka, Y. Horikoshi., “Photoluminescence study of Si doped and undoped Chalcopyrite CuGaSe2 thin films,” Applied Physics A,113, 257-
261 (2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code