Responsive image
博碩士論文 etd-0710117-125454 詳細資訊
Title page for etd-0710117-125454
論文名稱
Title
固化過程中多顆氣泡沉陷於固體形成多個氣孔機制之研究
Mechanism of multiple bubbles entrapped as pores in solid during solidification
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-08-10
關鍵字
Keywords
相位場函數、熱毛細力、表面張力、兩相流、相位場法、對流效應、濃度擴散
Surface tension, pore formation, Phase field, two-phase flow, bubble, multiple bubbles, Phase field function, Thermocapillary
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
本研究採用相位場法,以兩相流模擬多個氣泡在固化過程中與固液介面間之動態行為。其中以溫度及相位場函數決定固、液、氣三相。本研究計算質量守恆方程式、動量方程式、能量方程式以及濃度方程式。模擬結果顯示氣泡形狀受對流效應影響及其成長機制極為複雜。
Abstract
This study applies the phase- field method to simulate multiple pores shapes in solid, and explore mechanisms responsible for pore formation. The simulation method is base on two-dimensional two-phase flow module in the COMSOL software. Conservation equations of mass, momentum, energy and concentration are solved in the entire domain by incorporating with temperature to distinguish solid and liquid phases, and phase field function to distinguish liquid and gas phases. The computed results reveal complicated shapes and mechanisms of the pore shape.
目次 Table of Contents
目錄
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
符號說明 ix
下標符號說明 xii
第一章 緒論 1
1-1研究背景 1
1-2相位場法(PFM)及二相流(Two phase flow) 1
1-3 研究內容簡介與架構 2
第二章 模型設定與理論之分析 3
2-1模組之統御方程式 3
2-1-1 相位場法方程式 3
2-1-2質量及動量守恆方程式 5
2-1-3 能量方程式 8
2-1-4 濃度方程式 9
2-2模型架構 10
2-2-1 模型架構設定 10
2-2-2 網格分布與設定 11
2-2-3 初始值與邊界設定 12
2-2-4 流體性質 14
2-3 研究模擬之流程圖 15
第三章 結果與討論 16
3-1 模擬條件與說明 16
3-2 基本性質 17
3-3 固化速度低於界面速度 19
3-3-1 密度圖 19
3-3-2 濃度圖 21
3-3-3 溫度圖 24
3-3-4 密度與流場圖 26
3-4 固化速度高於界面速度 29
3-4-1 密度圖 29
3-4-2 濃度圖 30
3-4-3 溫度圖 32
3-4-4 密度與流場等位圖 33
3-5 對流效應 35
3-6 網格驗證 37
3-7 R(0)與壓力關係 39
第四章 結論與未來展望 40
參考文獻 41
參考文獻 References
參考文獻
[1] S. Kou, Welding Metallurgy. Wiley, New York, 1987.
[2] M. C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974
[3] Y. Sun and C. Beckermann, 2010,“Phase-field modeling of bubble growth and flowin a Hele-shaw cell”, J. Heat and Mass Transfer, 2969-2978.
[4] David C. Venerus and Nadia Yala,1997,“Transport Analysis of Diffusion-Induced Bubble Growth and Collapse in Viscous
[5] Tanai L. Marin,“Solidification of a Liquid Metal Droplet Impinging on a Cold Surface”,Excerpt from the Proceedings of the COMSOL Users Conference 2006 Boston.
[6] V.R.Voller and C.Prakash,“ A fixed grid numerical Modelling Methodology for convection-diffusion mushy region phase-change problem”,Jourmal of Heat and Mass Transfer,30(8),1709-1719(1987).
[7] Luiz C. Wrobel and M. H. Aliabadi, 2003, The boundary element methods. Wiley, UK.
[8] Vittorio Cristini, Jerzy Bławzdziewicz, and Michael Loewenberg, 1998, “Drop breakup in three-dimensional viscous flows”, Phsics fluids, Vol. 10, pp.1781-1783
[9] Howard H. Hu, N. A. Patankar and M. Y. Zhu, 2000, “Direct Numerical Simulations of Fluid–Solid Systems Using the Arbitrary Lagrangian–Eulerian Technique”, Journal of Computational Physics 169, pp.427–462
[10] S. Ramaswamy and L.G. Leal, 1998, “ The deformation of a viscoelastic drop subjected to steady uniaxial extensional flow of a Newtonian fluid”, J. Non-Newtonian fluid mech., 85, pp.127-163
[11] Stanley Osher and Nikos Paragios, 2003, Geometric level set methods in imaging, vision, and graphics. Springer-Verlag. New York.
[12] Ruben Scardovelli and Stephane Zaleski,1999,“Direct numerical simulation of free-surface and interfacial flow”,Annu. Rev. Fluid Mech.,Vol.31,567-603.
[13] Y. Sun and C. Beckermann,2007,“Sharp interface tracking using the phase-field equation”, Journal of Computational Physics 220,pp.626-653.
[14] Cahn, J. W. and Hilliard, J. E, 1958, “Free energy of a nonuniform system. I. Interfacial free energy”, J. Chem. Phys. 28, pp.258-267.
[15] F. Kong, H. Zhang and G. Wang,2008,“Numerical Simulation of Transient Multiphase Field during Hybrid Plasma-Laser Deposition Manufacturing”J. Heat Transfer, Vol.130, NO.112101,pp.1-7.a
[16] Shyamprasad Karagadde, Suresh Sundarraj, Pradip Dutta,2012, “A model for growth and engulfment of gas microporosity during aluminum alloy solidification process”,Computational Materials Science 65 ,pp.383-394.
[17] comsol1998–2008, “Chemical Engineering MODULE”,BOILING WATER ,pp.155-156.
[18] PengtaoYue, JamesJ. Feng, Chun Liu and Jie Shen,2004, “A diffuse-interface method for simulating two-phase flows of complex fluids”, J. Fluid Mech. , Vol. 515,pp.293-317.
[19] S. Karagadde, S. Sundarrij,P.Dutta,2012: “A model for growth and engulfment of gas microporosity during aluminum alloy solidification process”Computational Meterials Science 65,pp.383-394

[20] Christopher J. Forster, Marc K. Smith ,“The Transient Modeling of Single-Bubble Nucleate Boiling in a Sub-Cooled Liquid Using an ALE Moving Mesh”, 2011 COMSOL Conference in Boston
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.236.214.123
論文開放下載的時間是 校外不公開

Your IP address is 3.236.214.123
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code