Responsive image
博碩士論文 etd-0710117-163602 詳細資訊
Title page for etd-0710117-163602
論文名稱
Title
藍光光電材料之研究與其發光之應用
Study of Blue Light Emitting Optoelectronic Materials and its Lighting Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
137
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-19
繳交日期
Date of Submission
2017-08-14
關鍵字
Keywords
咔唑、蒽、醚鍵、聚合物發光二極管、藍光發射
ether linkage, blue light emission, Polymer light emitting diodes, carbazole, anthracene
統計
Statistics
本論文已被瀏覽 5752 次,被下載 429
The thesis/dissertation has been browsed 5752 times, has been downloaded 429 times.
中文摘要
本論文主要以藍光光電材料及其發光之應用為研究。該材料成功透過二醇和二氟單體的缩聚化學反應來合成。我們調查了蔥系衍生物上的氟化物基因及透過芳香基為醚鍵組成咔唑衍生物的影響。合成後的藍色聚合物表現出來良好的溶解性、加工性能、高熱穩定性,且高玻璃轉變溫度為272ºC,分解溫度為358 ºC。與對應的溶液PL光譜相比,聚合物的固態光致發光PL光譜(λPL=456 nm)顯現出紅移現象(∆λ = 37 nm)。
多層聚合物發光二極管使用具有ITO / PEDOT:PSS / BP / LiF / Al結構的藍色聚合物來製造。其亮度電壓(L-V)和電流密度 - 電壓(J-V)曲線顯示最大亮度為7544cd / m 2,最大發射效率為4.2cd / A,以及導通電壓的最大電流密度為453mA / cm 2 4.5V。此外,該PLED促使純藍EL發光並穩定在436nm且具有突出的CIE坐標(x = 0.15,y = 0.08)。換句話說,此結果非常接近純NTSC藍色坐標(0.14,0.08)。我們提出了在以蒽系衍生物作為客體材料及具有數種進料比(P1-25%,P2-20%P3-15%,P4-10%)的轉移咔唑衍生物作為主體材料的基礎上,聚亞芳基醚的成功合成。我們得出聚合物的玻璃化轉變溫度(Tg)為180〜255℃,分解溫度(Td)為358〜477℃, 數均分子量(Mn)範圍為3.12×104〜7.20×104,以及多分散指數(PDI)為1.25〜2.10。
這些聚合物的電致發光器件基於具有ITO / PEDOT:PSS /聚合物/ TmPyPB / LiF / Al的構型,發射出CIE色度坐標為(0.15,0.10)的藍光。最後,我們通過縮聚化學反應合成了一系列含有咔唑和蒽衍生物的藍色發光聚合物,且這些聚合物在白光發射中擔任藍色主體。通過以適當的比例組合藍色發射體聚合物(BP1-4)主體和摻雜劑紅色發射體4-(二氰基亞甲基)-2-甲基-6-(二甲基氨基苯乙烯基)-4H-吡喃(DCM)單元,我們也獲得了獲得白色發射。基於咔唑和含有2 wt%摻雜劑的蒽聚合物的最大亮度範圍高達29497cd / m 2,電流密度為2090mA / cm 2,我們製造了最佳的白色聚合物發光二極管(PLED)器件。本研究中也發現白光的CIE坐標為(0.30和0.31)。
Abstract
In this notion, we prepared the novel blue light emitting polymer and studied its lighting application in optoelectronics. Extensive research has been done in past few decades to achieve highly efficient electroluminescent materials emitting primary colors such as blue, green and red. Out of these colors blue emission is very unique because used as hosts with red and green dopant to achieve efficient white light emission. In this way of exploration, there is still an abundant demand to improve the performance of blue-light-emitters. To keep in mind these requirements new polymer design containing carbazole (already famous in literature) and anthracene (already employed in previous work) derivatives and it has been successfully synthesized via polycondensation chemical reaction of diol and difluoro monomers. The fluoride group’s effect on the anthracene derivatives and ether linkage to them with the carbazole derivatives were investigated. The synthesized blue polymer displays decent solubility, good process ability, and high thermal stability. The UV–vis absorption spectra and photoluminescence spectra describe that the light emission lies in blue region. The thin film state PL spectra of the blue polymer (λPL=456 nm) shows red shifting (∆λ = 37 nm) as compared to the corresponding solution PL spectra. The result leads to preserving the anthracene moieties emission in blue region. The multi-layered device was fabricated, using these polymer with ITO/PEDOT:PSS/BP/LiF/Al architecture. The device displayed better performance of a maximum luminescence 7544 cd/m2, current density of 453 mA/cm2, EQE at 2.75 % and turn on voltage at 4.5 V with novel blue emission at C.I.E coordinates of (0.15,0.08). The present finding offers us with a development for synthesis of reliable and portable sizes polymer for blue light emitting based diodes. Furthermore, we described a fruitful synthesis of the (poly-arylene ether)s centered on the anthracene derivatives as the guest materials, and the hole transfer carbazole derivatives as the host materials via nucleophilic polycondensation at various feeding ratios denoted as (P1-25% , P2-20%, P3-15%, and P4-10%). The attained polymers displayed high glass transition temperatures (Tg) ranging from 180 to 255 oC and decomposition temperatures (Td) ranging from 358 to 477 oC. Cyclic voltammetry examination inform that these polymers possess LUMOs energy levels ranging from −2.29 to −2.46 eV. Number average molecular weight of the above explained polymers lies between 3.12×104 to 7.20×104, and their polydispersity indices (PDI) ranged from 1.25 to 2.10. In case of thin films state, all the polymers emit blue luminance with the emission maximum peaks lies between 442 to 448 nm. The electroluminescent devices centered on the configuration of ITO/PEDOT:PSS/polymer/ TmPyPB /LiF/Al emitted blue light emission with CIE chromaticity coordinates of (0.15, 0.10). As a final point, we have synthesized a series of the blue light emitting polymers comprising both carbazole and anthracene derivatives via polycondensation chemical reactions. The polymers were employed as a blue host in white light emission. White emission is obtained by combining blue emitter polymers (BP1-4) host and dopant red emitter 4-(dicyano methylene)-2-methyl-6-(dimethyl aminostyryl)-4H-pyrane (DCM) units in appropriate ratio. White light emission is thus cultivated by selecting the appropriate concentrations of materials. The attained polymers exhibited Mn ranging from 4.60 × 104 to 7.74× 104. All studies have done thoroughly in both solution and in thin film state, equating the photo-physics possessions of both the absorption and emission spectra at various compositions. The light emitting devices were fabricated by using these polymers with ITO/PEDOT: PSS/BP1-BP4(X%)/LiF/Al (X= 0.5 wt%,1 wt%, 2 wt% and 3 wt %) configuration and their spectral properties were controlled by changing the dopant concentrations. The best white polymer light emitting diode (PLED) device was fabricated based on carbazole and anthracene polymer containing 2 wt% dopant, giving a maximum luminance range up to 29497 cd/m2,current density 2090 mA/cm2 and power efficiency 1.31 lm/W at 4.8 V, respectively. The CIE coordinate of white light were found around (0.30 and 0.31) and these are close to the National Television Standards Committee (NTSC), achieved effectively through collective efforts.
目次 Table of Contents
Outline of Contents
Acknowledgements--------------------------------------------------------------------------------------------i Chinese Abstract ----------------------------------------------------------------------------------------------ii
Abstract -------------------------------------------------------------------------------------------------------iii
Outline of Contents -------------------------------------------------------------------------------------------v
List of Figures-------------------------------------------------------------------------------------------------ix
List of Tables------------------------------------------------------------------------------------------------xiii
Chapter 1 General Introduction to the Polymer Light Emitting Diodes-------------------------1
1.1 Over view--------------------------------------------------------------------------------------------------1
1.2 Historical Development----------------------------------------------------------------------------------1
1.3 Device Structure and operation of PLEDs------------------------------------------------------------2
1.4 References-------------------------------------------------------------------------------------------------3
Chapter 2 Basic Related Theories------------------------------------------------------------------------6
2.1 Outline of Luminescence--------------------------------------------------------------------------------6
2.2 Fluorescence and Phosphorescence--------------------------------------------------------------------6
2.3 Photoluminescence --------------------------------------------------------------------------------------7
2.4 Electroluminescence-------------------------------------------------------------------------------------7
2.5 Energy Transfer Mechanism----------------------------------------------------------------------------8
2.5.1 Förster Energy Transfer-------------------------------------------------------------------------------8
2.5.2 Dexter Energy Transfer--------------------------------------------------------------------------------9
2.6 Brief Comparisons of OLED and PLED--------------------------------------------------------------9
2.7 Instrumentation------------------------------------------------------------------------------------------10
2.8 Following are the list and figures of the instrument employed in experiments-----------------11
2.9 References -----------------------------------------------------------------------------------------------17
Chapter 3 Fabrication of the Polymer Light Emitting diodes-------------------------------------20
3.1 Brief Introduction of the Light Emitting Polymers-------------------------------------------------20
3.1.1 Poly (P-Phenylene vinylene)------------------------------------------------------------------------20
3.1.2 Polyfluorene-------------------------------------------------------------------------------------------21
3.1.3 Poly (p-phenylene)------------------------------------------------------------------------------------21
3.1.4 Poly Carbazole----------------------------------------------------------------------------------------21
3.1.5 Anthracene---------------------------------------------------------------------------------------------22
3.1.6 Experimental Materials-------------------------------------------------------------------------------23
3.1.7 Different layers of the Device Manufacturing----------------------------------------------------24
3.1.7.1 Anode and Cathode---------------------------------------------------------------------------------24
3.1.7.2 Electron injection/transporting Layers-----------------------------------------------------------24
3.1.7.3 Hole injection/transporting Layers---------------------------------------------------------------24
3.1.7.4 Emission Layers-------------------------------------------------------------------------------------25
3.2 Materials employed in the sample preparations-----------------------------------------------------25
3.3 Experimental Procedure for depositions of different Layers in PLEDs--------------------------25
3.4 References------------------------------------------------------------------------------------------------26
Chapter 4 Novel Blue Light Emitting Discrete Π-Functional Polymer and Their Applications in Polymer Light Emitting Diodes-----------------------------------------------------29
4.1 Introduction--------------------------------------------------------------------------------------------29
4.2 Experimental Procedure------------------------------------------------------------------------------30
4.2.1 Materials------------------------------------------------------------------------------------------------30
4.2.2 Instrumentation----------------------------------------------------------------------------------------31
4.2.3 Synthesis of the Monomers--------------------------------------------------------------------------32
4.2.3.1 Anthracene Derivatives----------------------------------------------------------------------------32
4.2.3.2 Carbazole Derivatives------------------------------------------------------------------------------32
4.2.4 Synthesis of Polymer--------------------------------------------------------------------------------33
4.3 Light Emitting Device Fabrication--------------------------------------------------------------------33
4.4 Results and Discussion---------------------------------------------------------------------------------35
4.4.1 Thermal Properties------------------------------------------------------------------------------------35 4.4.2 Optical Properties-------------------------------------------------------------------------------------37
4.4.3 Electroluminescence Properties---------------------------------------------------------------------42
4.5 Conclusions----------------------------------------------------------------------------------------------44
4.6 References------------------------------------------------------------------------------------------------44
Chapter 5 Novel blue light emitting Poly(arylene ether)s under the influence of guest
concentrations in host-guest systems: Synthesis, electrochemical and photophysical properties----------------------------------------------------------------------------------------------------54
5.1 Introduction----------------------------------------------------------------------------------------------54
5.2 Experimental Sections----------------------------------------------------------------------------------58
5.2.1 Materials------------------------------------------------------------------------------------------------58
5.2.2 Synthesis of Monomers------------------------------------------------------------------------------58
5.2.2.1 Synthesis of (MO1) 4,4'-(9-(2-ethylhexyl)-9H-carbazole-3,6-diyl)diphenol -------------59
5.2.2.2 Synthesis of (MO2) 9-(2-ethylhexyl)-3, 6-bis (4-fluoro-3-(trifluoromethyl) phenyl)-
9H-carbazole.------------------------------------------------------------------------------------------------59
5.2.2.3 Synthesis of (MO3) 9, 10-bis (4-fluoro-3-(trifluoromethyl) phenyl) Anthracene----------59
5.2.2.4 Polymerization of the polymers (P1, P2, P3and P4) -----------------------------------------60
5.2.2.4.1 Synthesis of P1------------------------------------------------------------------------------------60
5.2.2.4.2 Synthesis of P2------------------------------------------------------------------------------------60
5.2.2.4.3 Synthesis of P3------------------------------------------------------------------------------------60
5.2.2.4.4 Synthesis of P4------------------------------------------------------------------------------------61
5.3 Measurements and Light Emitting Devices Fabrication-------------------------------------------61
5.4 Results and Discussion---------------------------------------------------------------------------------62
5.4.1 Thermal Properties------------------------------------------------------------------------------------62
5.4.2 Electrochemical Properties --------------------------------------------------------------------------64
5.4.3 Photo-Physical Properties----------------------------------------------------------------------------66
5.4.4 Electroluminescence Properties---------------------------------------------------------------------69
5.5 Conclusions ----------------------------------------------------------------------------------------------72
5.6 References------------------------------------------------------------------------------------------------72
Chapter 6 Highly-efficiency white light emitting diodes fabricated by using blue light emitting polymer blend doped with red emitter------------------------------------------------------84
6.1 Introduction----------------------------------------------------------------------------------------------84
6.2 Experimental details------------------------------------------------------------------------------------85
6.2.1 Materials------------------------------------------------------------------------------------------------85
6.2.2 Instrumentations---------------------------------------------------------------------------------------86
6.2.3 LED device fabrications and meaurements--------------------------------------------------------87
6.2.4 Synthesis of Monomers------------------------------------------------------------------------------90 6.2.4.1 Preparation of 9, 10-bis(4-fluoro-3-(trifluoromethyl)phenyl) anthracene (B1).------------90 6.2.4.2 Preparation of 3,6-bis (4-fluoro- 3- (trifluoromethyl) phenyl)-9-(4-methoxyphenyl)-9H Carbazole(B2).-----------------------------------------------------------------------------------------------91 6.2.4.3 Preparation of 4, 4'-( 9- (2-ethylhexyl)- 9H-carbazole-3, 6-diyl) diphenol (B3).--92 6.2.4.4 General procedure for polymerization-----------------------------------------------------------93
6.3 Results----------------------------------------------------------------------------------------------------94 6.3.1 UV-vis Absorption, Photoluminescence, and Electrochemical Properties.-------------------98
6.3.2 Electroluminescence and Current-Voltage- Luminance Properties.------------------------ 101 6.4 Conclusions--------------------------------------------------------------------------------------------105 6.5 References----------------------------------------------------------------------------------------------106 Chapter 7 Conclusions and Recommendations for Future Works.-------------------------116 7.1 Conclusions---------------------------------------------------------------------------------------------116 7.2 Recommendations for Future Works----------------------------------------------------------------117
7.3 Publication List-----------------------------------------------------------------------------------------120
7.4 List of Abbreviations----------------------------------------------------------------------------------121
















List of Figures
Fig. 1.1 (a) Schematic working mechanism of a PLED. (b) Energy level diagram of a PLED ----------------------------------------------------------------------------------------------------------3
Fig. 2.1 Förster Energy Transfer mechanism.-------------------------------------------------------------8
Fig. 2.2 Dexter energy transfer mechanism----------------------------------------------------------------9
Fig. 2.3 DSC Image.-----------------------------------------------------------------------------------------11
Fig. 2.4 TGA Image-----------------------------------------------------------------------------------------12
Fig. 2.5 UV-vis Image---------------------------------------------------------------------------------------13
Fig. 2.6 PL Image--------------------------------------------------------------------------------------------13
Fig. 2.7 NMR Image-----------------------------------------------------------------------------------------14
Fig. 2.8 F.T.M.Spectrometry-------------------------------------------------------------------------------15
Fig. 2.9 POM Image-----------------------------------------------------------------------------------------15
Fig. 2.10 Spin Coater----------------------------------------------------------------------------------------16
Fig. 2.11 Hot Plate-------------------------------------------------------------------------------------------16
Fig. 2.12 UVO Cleaner--------------------------------------------------------------------------------------17
Fig. 3.1 Light emitting polymers.--------------------------------------------------------------------------22
Fig. 3.2 Various anthracene derivatives used in light emitting applications.------------------------23
Fig. 3.3 Experimental material employed.---------------------------------------------------------------23
Fig. 4.1 (Scheme 1) Synthetic of the new Monomers ---------------------------------------------------34
Fig. 4.2 (Scheme 2) Polymerization of the new Monomers--------------------------------------------34
Fig. 4.3 (a) TGA curves of the monomers. (b) TGA curves of polymer of the blue polymer -----36
Fig. 4.4 (a) Normalized UV-vis absorption and PL spectra of the polymers in solution of
Chlorobenzene and (b) Normalized UV-vis absorption and PL spectra of the polymers in the thin film state.------------------------------------------------------------------------------------------------------37
Fig. 4.5 Schematic drawing outlines the different stacking trend in monomer and polymer.------39
Fig. 4.6 TOF plot of hole and electron mobility.--------------------------------------------------------40
Fig. 4.7 The (a) structure and (b) energy diagram for blue polymer light-emitting device.-------40
Fig. 4.8 Normalized EL Spectra of ITO/PEDOT: PSS/BH-BG/LiF/Al of sample at RT (room Temperature).-------------------------------------------------------------------------------------------------41
Fig. 4.9 Blue polymers PL and EL of the CIE coordinates.--------------------------------------------41
Fig. 4.10 Polarized light microscopy of (a) monomer at 80 °C, cooling from the melt at 1 °C/min
and (b) polymer after spin coating at speed 1000 rpm and annealing at 80℃-----------------------42
Fig. 4.11 The characteristics of the device based on the configuration of ITO/PEDDOT:PSS/
BP/LiF/Al (a) current density versus voltage and luminance versus voltage (b) ) Current
versus voltage and EQE versus voltage.------------------------------------------------------------------49
Fig. 4.12 1H-NMR data of the anthracene derivatives.-------------------------------------------------50
Fig. 4.13 1H-NMR data of the carbazole dervatives.----------------------------------------------------51
Fig. 4.14 1H-NMR data of the polymer.------------------------------------------------------------------51
Fig. 4.15 Mass data of the polymer.-----------------------------------------------------------------------52
Fig. 4.16 Mass data of the anthracene derivatives.------------------------------------------------------52
Fig. 4.17 Mass data of the carbazole derivative.---------------------------------------------------------53
Fig. 5.1 (Scheme 1) Synthesis scheme of the monomers (MO1, MO2)------------------------------56
Fig. 5.2 (Scheme 2) Synthesis scheme of the monomer (MO3) and molecular structural
configurations of blue light emitting polymers ( P1-25% n=0.5, P2-20% n=0.4, P3-15%
n=0.3, P4-10% n=0.1).--------------------------------------------------------------------------------------57
Fig. 5.3 TGA thermograms at heating rate of 10 oC min-1.--------------------------------------------63
Fig. 5.4 Cyclic voltammograms of different polymers measured at room temperature at scan rate
200mV/s------------------------------------------------------------------------------------------------------64
Fig. 5.5 Simplified energy-level diagram of the optoelectronics devices.---------------------------65
Fig. 5.6 UV-vis absorption and photoluminescence (PL) spectra of the polymers in the dilute chloroform solution.-----------------------------------------------------------------------------------------67
Fig. 5.7 UV-vis absorption spectra of polymer thin films.---------------------------------------------68
Fig. 5.8 Normalized PL spectra of polymer in thin film.-----------------------------------------------68
Fig. 5.9 Energy levels diagram of the PLEDs device.--------------------------------------------------70
Fig. 5.10 EL spectra of the PLED devices at various concentrations.--------------------------------70
Fig. 5.11 Luminescence - current density curve of the carbazole/anthracene based polymer
device.---------------------------------------------------------------------------------------------------------71
Fig. 5.12 Voltage- current density curve of the carbazole/anthracene based polymer devices.---71
Fig. 5.13 Monomer 1(Anthracene derivatives) data of 1H-NMR.------------------------------------76
Fig. 5.14 Monomer 2 (Carbazole derivatives) data of 1H-NMR.-------------------------------------77
Fig. 5.15 Monomer 3 (Carbazole derivatives) data of 1H-NMR--------------------------------------78
Fig. 5.16 Polymer P1 data of 1H-NMR.------------------------------------------------------------------79
Fig. 5.17 Polymer P2 data of 1H-NMR.------------------------------------------------------------------79
Fig. 5.18 Polymer P4 data of 1H-NMR.------------------------------------------------------------------80
Fig. 5.19 Mass data of the Monomer 1 (Anthracene derivatives).------------------------------------81
Fig. 5.20 Mass data of the Monomer 2 (Carbazole derivatives).--------------------------------------82
Fig. 5.21 Mass data of the Monomer 3 (Carbazole derivatives).--------------------------------------83
Fig. 6.1 (a) Synthetic scheme and chemical structures of the B1 and B2 monomer used.---------88
Fig. 6.1 (b) Synthetic scheme and chemical structures of the B3 monomer used. -----------------89
Fig. 6.2 Chemical structures of the materials used.-----------------------------------------------------90
Fig. 6.3 TGA of the polymers recorded under flowing nitrogen atmosphere.----------------------94
Fig. 6.4 DSC curves of the polymers recorded under the flowing nitrogen atmosphere.---------94
Fig. 6.5 Absorption spectra of DCM and emission spectra of BP1-BP4 in the chlorobenzene solutions.-----------------------------------------------------------------------------------------------------95
Fig. 6.6 UV-vis absorption and PL emission spectra of the (a) BP1, (b) BP2, (c) BP3, and (d) BP4------------------------------------------------------------------------------------------------------------96
Fig. 6.7 Photoluminescence spectra of the (a) BP1, (b) BP2, (c) BP3, and (d) BP4 polymers in
solid film at various doping ratios.------------------------------------------------------------------------97
Fig. 6.8 Energy level diagram of the ITO/PEDOT: PSS/BP1-BP4/LiF/Al device.----------------98
Fig. 6.9 Plots of current density–voltage (I–V) characteristics (a) and (b) luminescence– voltage
(L–V) properties and (c) power efficiency -current density of the devices and (d) EL spectra of the devices with the device configuration ITO/PEDOT: PSS BP:DCM/LiF/cathodes.-----------101
Fig. 6.10 AFM view of the samples.---------------------------------------------------------------------105
Fig. 6.11 Monomer B1 (Anthracene derivatives) data of 1H-NMR.---------------------------------109
Fig. 6.12 Mass data of the Monomer 1 (Anthracene derivatives).-----------------------------------110
Fig. 6.13 Monomer B2 (Carbazole derivatives) data of 1H-NMR.-----------------------------------110
Fig. 6.14 Mass data of the Monomer B2.---------------------------------------------------------------111
Fig. 6.15 Monomer B3 (Carbazole derivatives) data of 1H-NMR.----------------------------------112
Fig. 6.16 Mass data of the Monomer B3.---------------------------------------------------------------112
Fig. 6.17 Polymer BP1 1H-NMR.------------------------------------------------------------------------113
Fig. 6.18 Polymer BP2 1H-NMR.------------------------------------------------------------------------114
Fig. 6.19 Polymer BP3 1H-NMR.-----------------------------------------------------------------------114
Fig. 6.20 Polymer BP4 1H-NMR.------------------------------------------------------------------------115
Fig. 7.1 New polymer structure.-------------------------------------------------------------------------118
Fig. 7.2 New structure of the bianthracene derivatives materials.----------------------------------119



















List of Tables
Table 1 Summary of thermal and electrochemical parameters of BP--------------------------------36
Table 2 Optical properties of Blue Polymer.------------------------------------------------------------38
Table 3 EL of the different device Performance Data with the configuration of as used as ITO/ PEDDOT:PSS / polymer /LiF/ Al-------------------------------------------------------------------------43
Table 4 Physical and Thermal Properties of the Polymers -------------------------------------------63
Table 5 Electrochemical data of Polymers.-------------------------------------------------------------65
Table 6 Photo-physical properties of the polymers.--------------------------------------------------- 67
Table 7 Thermal and electrochemical data of the BP1-BP4.----------------------------------------103
Table 8 Optical data of the BP1-BP4.------------------------------------------------------------------103
Table 9 The optical and electrical characteristics of various White Polymer LEDs for ITO / PEDOT: PSS/BPX%: DCM/LiF/Al structure.---------------------------------------------------------104
參考文獻 References
Chapter 1
[1] Friend R, Gymer R, Holmes A, Burroughes J, Marks R, Taliani C, et al. Electroluminescence in conjugated polymers. Nature. 1999;397:121-128.
[2] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539-541.
[3] Berggren M, Inganäs O, Gustafsson G, Rasmusson J, Andersson MR, Hjertberg T, et al. Light-emitting diodes with variable colours from polymer blends. Nature. 1994;372:444-446.
[4] Ye J, Chen Z, Fung M-K, Zheng C, Ou X, Zhang X, et al. Carbazole/sulfone hybrid D-π-A-structured bipolar fluorophores for high-efficiency blue-violet electroluminescence. Chemistry of Materials. 2013;25:2630-37.
[5] Rothberg LJ, Lovinger AJ. Status of and prospects for organic electroluminescence. Journal of Materials Research. 1996;11:3174.
[6] Virgili T, Lidzey DG, Bradley DD. Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin‐Doped Poly (9, 9‐dioctylfluorene) Light‐Emitting Diodes. Advanced Materials. 2000;12:58-62.
[7] Grem G, Leditzky G, Ullrich B, Leising G. Realization of a blue‐light‐emitting device using poly (p‐phenylene). Advanced Materials. 1992;4:36-37.
[8] Leclerc M. Polyfluorenes: twenty years of progress. Journal of Polymer Science Part A: Polymer Chemistry. 2001;39:2867-73.
[9] Neher D. Polyfluorene Homopolymers: Conjugated Liquid‐Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromolecular Rapid Communications. 2001;22:1365-85.
[10] Tu M-L, Su Y-K, Wu S-S, Chen R-T. Electroluminescence at pure blue region from a new anthracene-contained polymer. Synthetic Metals. 2013;175:134.
[11] Morin J.F, Leclercen M, Adesnse D, Sioveon A. Polycarbazolesel: 25 years of progress. Macromolecular Rapid Communications. 2005;26:761-778.
[12] Raj V, Madheswari D, Mubarak Ali M. Chemical formation, characterization and properties of polycarbazole. Journal of applied polymer science. 2010;116:147-154.
[13] Huang C-W, Tsai C-L, Liu C-Y, Jen T-H, Yang N-J, Chen S-A. Design of deep blue electroluminescent spiro-polyfluorenes with high efficiency by facilitating the injection of charge carriers through incorporation of multiple charge transport moieties. Macromolecules. 2012;45:1281-87.
[14] Bian C, Jiang G, Tong H, Cheng Y, Xie Z, Wang L, et al. Pure blue electroluminescent poly (aryl ether) s with dopant–host systems. Journal of Polymer Science Part A: Polymer Chemistry. 2011;49:3911-19.
[15] Sun J, Cheng JG, Zhu WQ, Ren SJ, Zhong HL, Zeng DL, et al. An X‐shaped π‐conjugated polymer comprising of fluorene units and anthracene units with high efficiency. Synthesis and optical and electrochemical properties. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46:5616-25.
[16] Donat-Bouillud A, Lévesque I, Tao Y, D'Iorio M, Beaupré S, Blondin P, et al. Light-emitting diodes from fluorene-based π-conjugated polymers. Chemistry of materials. 2000;12:1931-36.
[17] Park JH, Yun C, Park MH, Do Y, Yoo S, Lee MH. Vinyl-Type Polynorbornenes with Triarylamine Side Groups: A New Class of Soluble Hole-Transporting Materials for OLEDs. Macromolecules. 2009;42:6840-43.
[18] Sugiyama K, Hirao A, Hsu J-C, Tung Y-C, Chen W-C. Living Anionic Polymerization of Styrene Derivatives para-Substituted with π-Conjugated Oligo (fluorene) Moieties. Macromolecules. 2009;42:4053-62.
[19] Kang B-G, Kang N-G, Lee J-S. Living anionic polymerization of styrene derivatives containing triphenylamine moieties through introduction of protecting group. Macromolecules. 2010;43:8400-08.
[20] Hsu J-C, Sugiyama K, Chiu Y-C, Hirao A, Chen W-C. Synthesis of New Star-Shaped Polymers with Styrene− Fluorene Conjugated Moieties and Their Multicolor Luminescent Ordered Microporous Films. Macromolecules. 2010;43:7151-58.
[21] Park MH, Park JH, Do Y, Lee MH. Metallocene-catalyzed synthesis of polyethylenes with side-chain triarylamines: Effects of catalyst structure and triarylamine functionality. Polymer. 2010;51:4735-43.
[22] Park JH, Yun C, Koh T-W, Do Y, Yoo S, Lee MH. Vinyl-type polynorbornene with 9, 9′-(1, 1′-biphenyl)-4, 4′-diylbis-9H-carbazole side groups as a host material for highly efficient green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry. 2011;21:5422-29.
[23] Hargadon MT, Davey EA, McIntyre TB, Gnanamgari D, Wynne CM, Swift RC, et al. Alternating block copolymers consisting of oligo (phenylene) and oligo (ethylene glycol) units of defined length: Synthesis, thermal characterization, and light-emitting properties. Macromolecules. 2008;41:741-50.
[24] Aitken BS, Wieruszewski PM, Graham KR, Reynolds JR, Wagener KB. Control of charge-carrier mobility via in-chain spacer length variation in sequenced triarylamine functionalized polyolefins. ACS Macro Letters. 2012;1:324-27.
[25] Tang H, Pu Z, Huang X, Wei J, Liu X, Lin Z. Novel blue-emitting carboxyl-functionalized poly (arylene ether nitrile) s with excellent thermal and mechanical properties. Polymer Chemistry. 2014;5:3673-79.
[26] Mercer FW, Duff DW, Goodman TD, Wojtowicz JB. Fluorinated Poly (arylene ethers) with Low Dielectric Constants. ACS Symposium Series: Washington, DC: American Chemical Society.1974; Chapter four; p: 526-534.

Chapter 2
[1] Friend R, Gymer R, Holmes A, Burroughes J, Marks R, Taliani C, et al. Electroluminescence in conjugated polymers. Nature. 1999;397:121-8.
[2] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, et al. Light-emitting diodes based on conjugated polymers. nature. 1990;347:539-41.
[3] Berggren M, Inganäs O, Gustafsson G, Rasmusson J, Andersson MR, Hjertberg T, et al. Light-emitting diodes with variable colours from polymer blends. 1994.
[4] Ye J, Chen Z, Fung M-K, Zheng C, Ou X, Zhang X, et al. Carbazole/sulfone hybrid D-π-A-structured bipolar fluorophores for high-efficiency blue-violet electroluminescence. Chemistry of Materials. 2013;25:2630-7.
[5] Rothberg LJ, Lovinger AJ. Status of and prospects for organic electroluminescence. Journal of Materials Research. 1996;11:3174.
[6] Virgili T, Lidzey DG, Bradley DD. Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin‐Doped Poly (9, 9‐dioctylfluorene) Light‐Emitting Diodes. Advanced Materials. 2000;12:58-62.
[7] Grem G, Leditzky G, Ullrich B, Leising G. Realization of a blue‐light‐emitting device using poly (p‐phenylene). Advanced Materials. 1992;4:36-7.
[8] Leclerc M. Polyfluorenes: twenty years of progress. Journal of Polymer Science Part A: Polymer Chemistry. 2001;39:2867-73.
[9] Neher D. Polyfluorene Homopolymers: Conjugated Liquid‐Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromolecular Rapid Communications. 2001;22:1365-85.
[10] Tu M-L, Su Y-K, Wu S-S, Chen R-T. Electroluminescence at pure blue region from a new anthracene-contained polymer. Synthetic Metals. 2013;175:134.
[11] Morin JF, Leclerc M, Ades D, Siove A. Polycarbazoles: 25 years of progress. Macromolecular Rapid Communications. 2005;26:761-78.
[12] Raj V, Madheswari D, Mubarak Ali M. Chemical formation, characterization and properties of polycarbazole. Journal of applied polymer science. 2010;116:147-54.
[13] Huang C-W, Tsai C-L, Liu C-Y, Jen T-H, Yang N-J, Chen S-A. Design of deep blue electroluminescent spiro-polyfluorenes with high efficiency by facilitating the injection of charge carriers through incorporation of multiple charge transport moieties. Macromolecules. 2012;45:1281-7.
[14] Bian C, Jiang G, Tong H, Cheng Y, Xie Z, Wang L, et al. Pure blue electroluminescent poly (aryl ether) s with dopant–host systems. Journal of Polymer Science Part A: Polymer Chemistry. 2011;49:3911-9.
[15] Sun J, Cheng JG, Zhu WQ, Ren SJ, Zhong HL, Zeng DL, et al. An X‐shaped π‐conjugated polymer comprising of fluorene units and anthracene units with high efficiency. Synthesis and optical and electrochemical properties. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46:5616-25.
[16] Donat-Bouillud A, Lévesque I, Tao Y, D'Iorio M, Beaupré S, Blondin P, et al. Light-emitting diodes from fluorene-based π-conjugated polymers. Chemistry of materials. 2000;12:1931-6.
[17] Park JH, Yun C, Park MH, Do Y, Yoo S, Lee MH. Vinyl-Type Polynorbornenes with Triarylamine Side Groups: A New Class of Soluble Hole-Transporting Materials for OLEDs. Macromolecules. 2009;42:6840-3.
[18] Sugiyama K, Hirao A, Hsu J-C, Tung Y-C, Chen W-C. Living Anionic Polymerization of Styrene Derivatives para-Substituted with π-Conjugated Oligo (fluorene) Moieties. Macromolecules. 2009;42:4053-62.
[19] Kang B-G, Kang N-G, Lee J-S. Living anionic polymerization of styrene derivatives containing triphenylamine moieties through introduction of protecting group. Macromolecules. 2010;43:8400-8.
[20] Hsu J-C, Sugiyama K, Chiu Y-C, Hirao A, Chen W-C. Synthesis of New Star-Shaped Polymers with Styrene− Fluorene Conjugated Moieties and Their Multicolor Luminescent Ordered Microporous Films. Macromolecules. 2010;43:7151-8.
[21] Park MH, Park JH, Do Y, Lee MH. Metallocene-catalyzed synthesis of polyethylenes with side-chain triarylamines: Effects of catalyst structure and triarylamine functionality. Polymer. 2010;51:4735-43.
[22] Park JH, Yun C, Koh T-W, Do Y, Yoo S, Lee MH. Vinyl-type polynorbornene with 9, 9′-(1, 1′-biphenyl)-4, 4′-diylbis-9H-carbazole side groups as a host material for highly efficient green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry. 2011;21:5422-9.
[23] Hargadon MT, Davey EA, McIntyre TB, Gnanamgari D, Wynne CM, Swift RC, et al. Alternating block copolymers consisting of oligo (phenylene) and oligo (ethylene glycol) units of defined length: Synthesis, thermal characterization, and light-emitting properties. Macromolecules. 2008;41:741-50.
[24] Aitken BS, Wieruszewski PM, Graham KR, Reynolds JR, Wagener KB. Control of charge-carrier mobility via in-chain spacer length variation in sequenced triarylamine functionalized polyolefins. ACS Macro Letters. 2012;1:324-7.
[25] Tang H, Pu Z, Huang X, Wei J, Liu X, Lin Z. Novel blue-emitting carboxyl-functionalized poly (arylene ether nitrile) s with excellent thermal and mechanical properties. Polymer Chemistry. 2014;5:3673-9.
[26] Mercer FW, Duff DW, Goodman TD, Wojtowicz JB. Fluorinated Poly (arylene ethers) with Low Dielectric Constants. ACS Symposium Series: Washington, DC: American Chemical Society,[1974]-; 1994. p. 526-34.

Chapter 3
[1] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539-41.
[2] Greenham N, Moratti S, Bradley D, Friend R, Holmes A. Efficient light-emitting diodes based on polymers with high electron affinities. Nature. 1993;365:628-30.
[3] Braun D, Heeger A, Kroemer H. Improved efficiency in semiconducting polymer light-emitting diodes. Journal of electronic materials. 1991;20:945-48.
[4] Jin Y, Kim J, Lee S, Kim JY, Park SH, Lee K, et al. Novel electroluminescent polymers with fluoro groups in vinylene units. Macromolecules. 2004;37:6711-15.
[5] Klaerner G, Miller R. Polyfluorene derivatives: effective conjugation lengths from well-defined oligomers. Macromolecules. 1998;31:2007-09.
[6] Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L. Light-emitting diodes based on fluorene polymers. Thin Solid Films. 2000;363:55-7.
[7] Grem G, Leditzky G, Ullrich B, Leising G. Realization of a blue‐light‐emitting device using poly (p‐phenylene). Advanced Materials. 1992;4:36-37.
[8] Liu R, Xiong Y, Zeng W, Wu Z, Du B, Yang W, et al. Extremely Color‐Stable Blue Light‐Emitting Polymers Based on Alternating 2, 7‐Fluorene‐co‐3, 9‐carbazole Copolymer. Macromolecular Chemistry and Physics. 2007;208:1503-09.
[9] Zhao L, Li C, Zhang Y, Zhu XH, Peng J, Cao Y. Anthracene‐Cored Dendrimer for Solution‐Processible Blue Emitter: Syntheses, Characterizations, Photoluminescence, and Electroluminescence. Macromolecular rapid communications. 2006;27:914-20.
[10] Zhu M, Ye T, Li C-G, Cao X, Zhong C, Ma D, et al. Efficient solution-processed nondoped deep-blue organic light-emitting diodes based on fluorene-bridged anthracene derivatives appended with charge transport moieties. The Journal of Physical Chemistry C. 2011;115:17965-72.
[11] Ismail YA, Soga T, Jimbo T. Improvement in light harvesting and performance of P3HT: PCBM solar cell by using 9, 10-diphenylanthracene. Solar Energy Materials and Solar Cells. 2009;93:1582-86.
[12] Kim Y-H, Shin D-C, Kim S-H, Ko C-H, Yu H-S, Chae Y-S, et al. Novel blue emitting material with high color purity. Advanced Materials. 2001;13:1690-93.
[13] Kim YH, Jeong HC, Kim SH, Yang K, Kwon SK. High‐Purity‐Blue and High‐Efficiency Electroluminescent Devices Based on Anthracene. Advanced Functional Materials. 2005;15:1799-805.
[14] Culligan SW, Chen AA, Wallace JU, Klubek KP, Tang CW, Chen SH. Effect of Hole Mobility Through Emissive Layer on Temporal Stability of Blue Organic Light‐Emitting Diodes. Advanced functional materials. 2006;16:1481-87.
[15] Shen W-J, Dodda R, Wu C-C, Wu F-I, Liu T-H, Chen H-H, et al. Spirobifluorene-linked bisanthracene: an efficient blue emitter with pronounced thermal stability. Chemistry of materials. 2004;16:930-41.
[16] Sun J, Chen J, Zou J, Ren S, Zhong H, Zeng D, et al. π-Conjugated poly (anthracene-alt-fluorene) s with X-shaped repeating units: New blue-light emitting polymers. Polymer. 2008;49:2282-87.
[17] Zhu F. Indium tin oxide anode modification for enhanced polymer light‐emitting devices. Journal of the Society for Information Display. 2003;11:605-09.
[18] Morgado J, Friend R, Cacialli F. Improved efficiency of light-emitting diodes based on polyfluorene blends upon insertion of a poly (p-phenylene vinylene) electron-confinement layer. Applied physics letters. 2002;80:2436-38.
[19] Zalar P, Henson ZB, Welch GC, Bazan GC, Nguyen TQ. Color Tuning in Polymer Light‐Emitting Diodes with Lewis Acids. Angewandte Chemie International Edition. 2012;51:7495-98.

Chapter 4
[1] Friend R, Gymer R, Holmes A, Burroughes J, Marks R, Taliani C, et al. Electroluminescence in conjugated polymers. Nature. 1999;397:121-8.
[2] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, et al. Light-emitting diodes based on conjugated polymers. Nature. 1990;347:539-41.
[3] Berggren M, Inganäs O, Gustafsson G, Rasmusson J, Andersson MR, Hjertberg T, et al. Light-emitting diodes with variable colours from polymer blends. 1994;116:147-54.
[4] Ye J, Chen Z, Fung M-K, Zheng C, Ou X, Zhang X, et al. Carbazole/sulfone hybrid D-π-A-structured bipolar fluorophores for high-efficiency blue-violet electroluminescence. Chemistry of Materials. 2013;25:2630-7.
[5] Rothberg LJ, Lovinger AJ. Status of and prospects for organic electroluminescence. Journal of Materials Research. 1996;11:3174.
[6] Virgili T, Lidzey DG, Bradley DD. Efficient Energy Transfer from Blue to Red in Tetraphenylporphyrin‐Doped Poly (9, 9‐dioctylfluorene) Light‐Emitting Diodes. Advanced Materials. 2000;12:58-62.
[7] Grem G, Leditzky G, Ullrich B, Leising G. Realization of a blue‐light‐emitting device using poly (p‐phenylene). Advanced Materials. 1992;4:36-7.
[8] Leclerc M. Polyfluorenes: twenty years of progress. Journal of Polymer Science Part A: Polymer Chemistry. 2001;39:2867-73.
[9] Neher D. Polyfluorene Homopolymers: Conjugated Liquid‐Crystalline Polymers for Bright Blue Emission and Polarized Electroluminescence. Macromolecular Rapid Communications. 2001;22:1365-85.
[10] Tu M-L, Su Y-K, Wu S-S, Chen R-T. Electroluminescence at pure blue region from a new anthracene-contained polymer. Synthetic Metals. 2013;175:134-7.
[11] Morin.JF,Leclerc M, Ades D,SioveA.Polycarbazoles: 25 years of progress. Macromolecular Rapid Communications. 2005;26:761-78.
[12] Raj V, Madheswari D, Mubarak Ali M. Chemical formation, characterization and properties of polycarbazole. Journal of applied polymer science. 2010;116:147-54.
[13] Huang C-W, Tsai C-L, Liu C-Y, Jene T-H, Yang N-J, Chen S-A. Design of deep blue electro-luminescent spiro-polyfluorenes with high efficiency by facilitating the injection of charge carriers through incorporation of multiple charge transport moieties. Macromolecules. 2012;45:1281-7.
[14] Bian C, Jiang G, Tong H, Cheng Y, Xie Z, Wang L, et al. Pure blue electroluminescent poly (aryl ether) s with dopant–host systems. Journal of Polymer Science Part A: Polymer Chemistry. 2011;49:3911-9.
[15] Sun J, Cheng JG, Zhu WQ, Ren SJ, Zhong HL, Zeng DL, et al. An X‐shaped π‐conjugated polymer comprising of fluorene units and anthracene units with high efficiency. Synthesis and optical and electrochemical properties. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46:5616-25.
[16] Donat-Bouillud A, Lévesque I, Tao Y, D'Iorio M, Beaupré S, Blondin P, et al. Light-emitting diodes from fluorene-based π-conjugated polymers. Chemistry of materials. 2000;12:1931-6.
[17] Park JH, Yun C, Park MH, Do Y, Yoo S, Lee MH. Vinyl-Type Polynorbornenes with Triarylamine Side Groups: A New Class of Soluble Hole-Transporting Materials for OLEDs. Macromolecules. 2009;42:6840-3.
[18] Sugiyama K, Hirao A, Hsu J-C, Tung Y-C, Chen W-C. Living Anionic Polymerization of Styrene Derivatives para-Substituted with π-Conjugated Oligo (fluorene) Moieties. Macromolecules. 2009;42:4053-62.
[19] Kang B-G, Kang N-G, Lee J-S. Living anionic polymerization of styrene derivatives containing triphenylamine moieties through introduction of protecting group. Macromolecules. 2010;43:8400-8.
[20] Hsu J-C, Sugiyama K, Chiu Y-C, Hirao A, Chen W-C. Synthesis of New Star-Shaped Polymers with Styrene− Fluorene Conjugated Moieties and Their Multicolor Luminescent Ordered Microporous Films. Macromolecules. 2010;43:7151-8.
[21] Park MH, Park JH, Do Y, Lee MH. Metallocene-catalyzed synthesis of polyethylenes with side-chain triarylamines: Effects of catalyst structure and triarylamine functionality. Polymer. 2010;51:4735-43.
[22] Park JH, Yun C, Koh T-W, Do Y, Yoo S, Lee MH. Vinyl-type polynorbornene with 9, 9′-(1, 1′-biphenyl)-4, 4′-diylbis-9H-carbazole side groups as a host material for highly efficient green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry. 2011;21:5422-9.
[23] Hargadon MT, Davey EA, McIntyre TB, Gnanamgari D, Wynne CM, Swift RC, et al. Alternating block copolymers consisting of oligo (phenylene) and oligo (ethylene glycol) units of defined length: Synthesis, thermal characterization, and light-emitting properties. Macromolecules. 2008;41:741-50.
[24] Aitken BS, Wieruszewski PM, Graham KR, Reynolds JR, Wagener KB. Control of charge-carrier mobility via in-chain spacer length variation in sequenced triarylamine functionalized polyolefins. ACS Macro Letters. 2012;1:324-7.
[25] Tang H, Pu Z, Huang X, Wei J, Liu X, Lin Z. Novel blue-emitting carboxyl-functionalized poly (arylene ether nitrile) s with excellent thermal and mechanical properties. Polymer Chemistry. 2014;5:3673-9.
[26] Mercer FW, Duff DW, Goodman TD, Wojtowicz JB. Fluorinated Poly (arylene ethers) with Low Dielectric Constants. ACS Symposium Series: Washington, DC: American Chemical Society,1974; 1994. p. 526-34.
[27] Li H, Zhang Y, Hu Y, Ma D, Wang L, Jing X, et al. Novel Soluble N‐Phenyl‐Carbazole‐Containing PPVs for Light‐Emitting Devices: Synthesis, Electrochemical, Optical, and Electroluminescent Properties. Macromolecular Chemistry and Physics. 2004;205:247-55.
[28] Thomas KJ, Lin J, Tao YT, Ko CW. Novel Green Light‐Emitting Carbazole Derivatives: Potential Electroluminescent Materials. Advanced Materials. 2000;12:1949-51.
[29] Gupta VD, Padalkar VS, Phatangare KR, Patil VS, Umape PG, Sekar N. The synthesis and photo-physical properties of extended styryl fluorescent derivatives of N-ethyl carbazole. Dyes and Pigments. 2011;88:378-84.
[30] Chen Y-H, Lin Y-Y, Chen Y-C, Lin JT, Lee R-H, Kuo W-J, et al. Carbazole/fluorene copolymers with dimesitylboron pendants for blue light-emitting diodes. Polymer. 2011;52:976-86.
[31] Lyu YY, Kwak J, Kwon O, Lee SH, Kim D, Lee C, et al. Silicon‐Cored Anthracene Derivatives as Host Materials for Highly Efficient Blue Organic Light‐Emitting Devices. Advanced Materials. 2008;20:2720-9.
[32] Sinigersky V, Müllen K, Klapper M, Schopov I. Photostructuring and Consecutive Doping of an Anthracene‐Containing Polymer: A New Approach Towards Conductive Patterns. Advanced Materials. 2000;12:1058-60.
[33] Lee JY, Choi MH, Moon DK, Haw JR. Synthesis of fluorene-and anthracene-based π-conjugated polymers and dependence of emission range and luminous efficiency on molecular weight. Journal of Industrial and Engineering Chemistry. 2010;16:395-400.
[34] Dhara MG, Banerjee S. Fluorinated high-performance polymers: poly (arylene ether) s and aromatic polyimides containing trifluoromethyl groups. Progress in Polymer Science. 2010;35:1022-77.
[35] Cabaj J, Idzik K, Sołoducho J, Chyla A. Development in synthesis and electrochemical properties of thienyl derivatives of carbazole. Tetrahedron. 2006;62:758-64.
[36] Ponce MB, Cabrerizo FM, Bonesi SM, Erra‐Balsells R. Synthesis and Electronic Spectroscopy of Bromocarbazoles. Direct Bromination of N‐and C‐Substituted Carbazoles by N‐Bromosuccinimide or a N‐Bromosuccinimide/Silica Gel System. Helvetica chimica acta. 2006;89:1123-39.
[37] Nayak PK, Agarwal N, Periasamy N, Patankar MP, Narasimhan K. Pure exciplex electroluminescence in blended film of small organic molecules. Synthetic Metals. 2010;160:722-7.
[38] Katsis D, Geng Y, Ou J, Culligan S, Trajkovska A, Chen SH, et al. Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission. Chemistry of materials. 2002;14:1332-9.
[39] Huang S-P, Huang G-S, Chen S-A. Deep blue electroluminescent phenylene-based polymers. Synthetic Metals. 2007;157:863-71.
[40] Liang J, Zhao S, Jiang X-F, Guo T, Yip H-L, Ying L, et al. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer. ACS applied materials & interfaces. 2016;8:6164-73.
[41] Miyaura N, Yamada K, Suzuki A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Letters. 1979;20:3437-40.
[42] Huang S-P, Huang G-S, Chen S-A. Deep blue electroluminescent phenylene-based polymers. Synthetic Metals. 2007;157:863-71.

Chapter 5
[1] Groenendaalrichachande Hen L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future. Advanced Materials. 2000;12:481-94.
[2] Huang WY, Huang S. Sterically encumbered fluorene-based poly (arylene ether) s containing spiro-annulated substituents on the main chain. Macromolecules. 2010;43:10355-65.
[3] Ghosh S, Mukherjee R, Ghosh A, Mohanty AK, Banerjee S. 2 Fluorinated Poly (Arylene Ether) s: Synthesis, Properties, and Applications. Handbook of Specialty Fluorinated Polymers: Preparation, Properties, and Applications. 2015;11: 2245-49.
[4] McGeheech MD, Bergstedt T, Zhang C, Saab AP, O’Regan MB, Bazan GC, et al. Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Advanced Materials. 1999;11:1349-54.
[5] Bian C, Jiang G, Tong H, Cheng Y, Xie Z, Wang L, et al. Pure blue electroluminescent poly (aryl ether) s with dopant–host systems. Journal of Polymer Science Part A: Polymer Chemistry. 2011;49:3911-19.
[6] Sun J, Chen J, Zou J, Ren S, Zhong H, Zeng D, et al. π-Conjugated poly (anthracene-alt-fluorene) s with X-shaped repeating units: New blue-light emitting polymers. Polymer. 2008;49:2282-87.
[7] Tu M-L, Su Y-K, Wu S-S, Chen R-T. Electroluminescence at pure blue region from a new anthracene-contained polymer. Synthetic Metals. 2013;175:134-37.
[8] Ku C-H, Kuo C-H, Leung M-k, Hsieh K-H. Carbazole–oxadiazole containing polyurethanes as phosphorescent host for organic light emitting diodes. European Polymer Journal. 2009;45:1545-53.
[9] Zhang T, Dai H, Li J. Novel carbazole/anthracene hybrids for efficient blue organic light-emitting diodes. Displays. 2013;34:447-51.
[10] Lee CW, Lee JY. High Quantum Efficiency in Solution and Vacuum Processed Blue Phosphorescent Organic Light Emitting Diodes Using a Novel Benzofuropyridine‐Based Bipolar Host Material. Advanced Materials. 2013;25:596-600.
[11] Jeong SH, Lee JY. Dibenzothiophene derivatives as host materials for high efficiency in deep blue phosphorescent organic light emitting diodes. Journal of Materials Chemistry. 2011;21:14604-09.
[12] Fukagaw H, Watanabe K, Tsuzuki T, Tokito S. Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure. Applied Physics Letters. 2008;93:133312-14.
[13] Chen Y-M, Hung W-Y, You H-W, Chaskar A, Ting H-C, Chen H-F, et al. Carbazole–benzimidazole hybrid bipolar host materials for highly efficient green and blue phosphorescent OLEDs. Journal of Materials Chemistry. 2011;21:14971-80.
[14] He J, Liu H, Dai Y, Ou X, Wang J, Tao S, et al. Nonconjugated carbazoles: a series of novel host materials for highly efficient blue electrophosphorescent OLEDs. The Journal of Physical Chemistry C. 2009;113:6761-70.
[15] Su S-J, Cai C, Kido J. RGB phosphorescent organic light-emitting diodes by using host materials with heterocyclic cores: Effect of nitrogen atom orientations. Chemistry of Materials. 2010;23:274-84.
[16] Nielsen KT, Bechgaard K, Krebs FC. Removal of palladium nanoparticles from polymer materials. Macromolecules. 2005;38:658-59.
[17] Kallitsis J, Gravalos K, Hilberer A, Hadziioannou G. Soluble polymers with laterally attached oligophenyl units for potential use as blue luminescent materials. Macromolecules. 1997;30:2989-96.
[18] Iraqi A, Wataru I. Preparation and Properties of 2, 7-Linked N-Alkyl-9 H-carbazole Main-Chain Polymers. Chemistry of materials. 2004;16:442-48.
[19] Zhan X, Wang S, Liu Y, Wu X, Zhu D. New series of blue-emitting and electron-transporting copolymers based on cyanostilbene. Chemistry of materials. 2003;15:1963-69.
[20] Na EJ, Lee KH, Kim BY, Lee SJ, Kim YK, Yoon SS. Non-Doped Blue OLEDs Based on 9, 9′-Dimethylfluorene Containing 10-Naphthylanthracene Derivatives. Molecular Crystals and Liquid Crystals. 2013;584:113-22.
[21] Kim D, Cho H, Kim C. Blue light emitting polymers. Progress in Polymer Science. 2000;25:1089-139.
[22] Zhang K, Tao Y, Yang C, You H, Zou Y, Qin J, et al. Synthesis and properties of carbazole main chain copolymers with oxadiazole pendant toward bipolar polymer host: tuning the HOMO/LUMO level and triplet energy. Chemistry of Materials. 2008;20:7324-31.
[23] Kim J-S, Ho PK, Murphy CE, Friend RH. Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules. 2004;37:2861-71.
[24] Liu MS, Luo J, Jen AK. Efficient green-light-emitting diodes from silole-containing copolymers. Chemistry of materials. 2003;15:3496-500.
[25] Wang J, Leung LM. Synthesis and characterization of highly soluble blue emitting poly (2-vinylanthracene) with 9, 10-di (2-naphthalenyl) and 9, 10-di (3-quinolinyl) substituents. Dyes and Pigments. 2013;99:105-115.
[26] Dhara MG, Banerjee S. Fluorinated high-performance polymers: poly (arylene ether) s and aromatic polyimides containing trifluoromethyl groups. Progress in Polymer Science. 2010;35:1022-77.
[27] Cabaj J, Idzik K, Sołoducho J, Chyla A. Development in synthesis and electrochemical properties of thienyl derivatives of carbazole. Tetrahedron. 2006;62:758-764.
[28] Ponce MB, Cabrerizo FM, Bonesi SM, Erra‐Balsells R. Synthesis and Electronic Spectroscopy of Bromocarbazoles. Direct Bromination of N‐and C‐Substituted Carbazoles by N‐Bromosuccinimide or a N‐Bromosuccinimide/Silica Gel System. Helvetica chimica acta. 2006;89:1123-39.
[29] Nayak PK, Agarwal N, Periasamy N, Patankar MP, Narasimhan K. Pure exciplex electroluminescence in blended film of small organic molecules. Synthetic Metals. 2010;160:722-727.
[30] Tamura K, Shiotsuki M, Kobayashi N, Masuda T, Sanda F. Synthesis and properties of conjugated polymers containing 3, 9‐and 2, 9‐linked carbazole units in the main chain. Journal of Polymer Science Part A: Polymer Chemistry. 2009;47:3506-17.

Chapter 6
[1] Gong X, Moses D, Heeger AJ, Xiao S. White light electrophosphorescence from polyfluorene-based light-emitting diodes: Utilization of fluorenone defects. The Journal of Physical Chemistry B. 2004;108:8601-5.
[2] Jin Y, Kim J, Lee S, Kim JY, Park SH, Lee K, et al. Novel electroluminescent polymers with fluoro groups in vinylene units. Macromolecules. 2004;37:6711-15.
[3] Tasch S, List E, Ekström O, Graupner W, Leising G, Schlichting P, et al. Efficient white light-emitting diodes realized with new processable blends of conjugated polymers. Applied physics letters. 1997;71:2883-85.
[4] Lee PI, Hsu SLC, Lee JF. Pure white‐light‐emitting diodes from phosphorescent single polymer systems. Journal of Polymer Science Part A: Polymer Chemistry. 2008;46:464-72.
[5] 忆AndradeD. BW; Thompson, ME; Forrest, SR Adv. Mater. 2002;14:147.
[6] Misra A, Kumar P, Kamalasanan M, Chandra S. White organic LEDs and their recent advancements. Semiconductor science and Technology. 2006;21:R35.
[7] Xu Y, Peng J, Mo Y, Hou Q, Cao Y. Efficient polymer white-light-emitting diodes. Applied Physics Letters. 2005;86:163502.
[8] Tu G, Zhou Q, Cheng Y, Wang L, Ma D, Jing X, et al. White electroluminescence from polyfluorene chemically doped with 1, 8-napthalimide moieties. Applied physics letters. 2004;85:2172-74.
[9] Shao S, Ding J, Wang L, Jing X, Wang F. Highly efficient blue electrophosphorescent polymers with fluorinated poly (arylene ether phosphine oxide) as backbone. Journal of the American Chemical Society. 2012;134:15189-92.
[10] Chen L, Li P, Tong H, Xie Z, Wang L, Jing X, et al. White electroluminescent single‐polymer achieved by incorporating three polyfluorene blue arms into a star‐shaped orange core. Journal of Polymer Science Part A: Polymer Chemistry. 2012;50:2854-62.
[11] Shih HM, Wu RC, Shih PI, Wang CL, Hsu CS. Synthesis of fluorene‐based hyperbranched polymers for solution‐processable blue, green, red, and white light‐emitting devices. Journal of Polymer Science Part A: Polymer Chemistry. 2012;50:696-710.
[12] Hwang D-H, Lee J-D, Cho H-J, Cho NS, Lee SK, Shim H-K, et al. Organic white light-emitting diodes using a new DCM derivative as a doping molecule. Photonics Asia 2007: International Society for Optics and Photonics; 2007. p. 68280B-B-7.
[13] Huang J, Li G, Wu E, Xu Q, Yang Y. Achieving High‐Efficiency Polymer White‐Light‐Emitting Devices. Advanced Materials. 2006;18:114-17.
[14] Burroughes J, Bradley D, Brown A, Marks R, Mackay K, Friend R, et al. Light-emitting diodes based on conjugated polymers. nature. 1990;347:539-41.
[15] Iraqi A, Wataru I. Preparation and Properties of 2, 7-Linked N-Alkyl-9 H-carbazole Main-Chain Polymers. Chemistry of materials. 2004;16:442-48.
[16] Park M-J, Lee J, Jung IH, Park J-H, Hwang D-H, Shim H-K. Synthesis, characterization, and electroluminescence of polyfluorene copolymers with phenothiazine derivative; their applications to high-efficiency red and white PLEDs. Macromolecules. 2008;41:9643-49.
[17] Pei Q, Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. Journal of the American Chemical Society. 1996;118:7416-27.
[18] Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science. 1995;267:1332-34.
[19] Duan Y, Zhao Y, Cheng G, Jiang W, Li J, Wu Z, et al. Small molecular white organic light emitting devices with a single emission layer. Semiconductor science and technology. 2004;19:L32.
[20] Xu Y, Peng J, Jiang J, Xu W, Yang W, Cao Y. Efficient white-light-emitting diodes based on polymer codoped with two phosphorescent dyes. Applied Physics Letters. 2005;87:193502.
[21] Suzuki M, Tokito S, Sato F, Igarashi T, Kondo K, Koyama T, et al. Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers. Applied Physics Letters. 2005;86:103507.
[22] Baldo MA, Adachi C, Forrest SR. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B. 2000;62:10967.
[23] Lin H-C, Tsai C-M, Thomas KJ. Novel red and white PLED devices consisting of PVK blended with blue-emitting fluorene derivatives and carbazole dopants. Synthetic metals. 2006;156:1155-60.
[24] Cheng G, Fei T, Zhao Y, Ma Y, Liu S. White phosphorescent polymer light-emitting devices based on a wide band-gap polymer derived from 3, 6-carbazole and tetraphenylsilane. Organic Electronics. 2010;11:498-502.
[25] Song HJ, Lee JY, Song IS, Moon DK, Haw JR. Synthesis and electroluminescence properties of fluorene–anthracene based copolymers for blue and white emitting diodes. Journal of Industrial and Engineering Chemistry. 2011;17:352-7.
[26] Joule JA. Recent advances in the chemistry of 9H-carbazoles. Advances in heterocyclic chemistry. 1984;35:83-198.
[27] Koene BE, Loy DE, Thompson ME. Asymmetric triaryldiamines as thermally stable hole transporting layers for organic light-emitting devices. Chemistry of materials. 1998;10:2235-50.
[28] Adhikari RM, Neckers DC, Shah BK. Photophysical Study of Blue, Green, and Orange-Red Light-Emitting Carbazoles (1). The Journal of organic chemistry. 2009;74:3341-49.
[29] Liu Y, Nishiura M, Wang Y, Hou Z. π-Conjugated aromatic enynes as a single-emitting component for white electroluminescence. Journal of the American Chemical Society. 2006;128:5592-93.
[30] Chien CH, Chen CK, Hsu FM, Shu CF, Chou PT, Lai CH. Multifunctional Deep‐Blue Emitter Comprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups. Advanced Functional Materials. 2009;19:560-6.
[31] Zhang T, Dai H, Li J. Novel carbazole/anthracene hybrids for efficient blue organic light-emitting diodes. Displays. 2013;34:447-51.
[32] Shih PI, Chuang CY, Chien CH, Diau EG, Shu CF. Highly Efficient Non‐Doped Blue‐Light‐Emitting Diodes Based on an Anthrancene Derivative End‐Capped with Tetraphenylethylene Groups. Advanced Functional Materials. 2007;17:3141-1416.
[33] Zhu M, Wang Q, Gu Y, Cao X, Zhong C, Ma D, et al. Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence. Journal of Materials Chemistry. 2011;21:6409-15.
[34] Shinar J, Savvateev V. Introduction to organic light-emitting devices. Organic Light-Emitting Devices: Springer; 2004;22:1-41.
[35] Yao YS, Xiao J, Wang XS, Deng ZB, Zhang BW. Starburst DCM‐Type Red‐Light‐Emitting Materials for Electroluminescence Applications. Advanced functional materials. 2006;16:709-18.
[36] de Deus JF, Faria GC, Faria RM, Iamazaki ET, Atvars TD, Cirpan A, et al. White light emitting devices by doping polyfluorene with two red emitters. Journal of Photochemistry and Photobiology A: Chemistry. 2013;253:45-51.
[37] Huang WY, Chang M, Han Y, Huang P. Sterically encumbered poly (arylene ether) s containing spiro‐annulated substituents: Synthesis and thermal properties. Journal of Polymer Science Part A: Polymer Chemistry. 2010;48:5872-84.
[38] Quites FJ, Faria GC, Atvars TDZ. White emission in polymer light-emitting diodes: Color composition by single-layer electroluminescence and external photoluminescence component. Materials Letters. 2014;130:65-67.
[39] Uchida Y, Taguchi T. Lighting theory and luminous characteristics of white light-emitting diodes. Optical Engineering. 2005;44:124003-09.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code