Responsive image
博碩士論文 etd-0710117-211230 詳細資訊
Title page for etd-0710117-211230
論文名稱
Title
工件定位特徵辨識及陣列式組裝系統之研究
Research of position mark recognition of parts and an array type assembly system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-24
繳交日期
Date of Submission
2017-08-10
關鍵字
Keywords
陣列式組裝、十字定位、對位校正、機器視覺、結構光
Machine vision, Array-type assembly, Position-alignment, Cross-mark position, Structural light
統計
Statistics
本論文已被瀏覽 5717 次,被下載 194
The thesis/dissertation has been browsed 5717 times, has been downloaded 194 times.
中文摘要
現今影像自動化組裝系統廣泛應用於各領域,為了符合工業之需求,組裝系統以及機械手臂的應用也逐漸多元化。而組裝系統又以機器視覺占極重要的地位,因此影像處理系統越來越重要,在本文中將利用三維結構光辨識十字辨識特徵定位和應用。
本研究旨在開發一套利用三維結構光的機器視覺做十字特徵定位對準之系統辨識方法。空間點雲座標資料經電腦演算法以及矩陣轉換公式之運算,可以將三維偵測儀的座標系轉到固定座標系,藉由影像資訊可分析十字特徵圖形與目標位置之間所存在的位置及角度的修正,搭配一具有XYθ三軸壓電定位平台進行位移與角度之補償,達到定位維度為三的對準對齊之目標,待定位完成後再使用Z軸方向的真空吸嘴的方式,吸取與放置零件,達到陣列式零件組裝動作。
因為三維偵測儀座標系中所看見的零件平面的法向量為一個固定的向量,透過此方向向量與點資料內積關係可找出十字特徵平面,再透過本文中所提出的數學演算法算出於固定座標系中十字的中心點位置與偏轉角 ,以及應用於零件組裝時,建立可能最大運動誤差的估算。
實驗平台架構主要有直線長行程移動台負責X軸方向的2*2載盤的移動與Z軸方向的真空吸嘴上下的移動,2*2載盤上搭配XYθ三軸壓電定位平台進行微米級的移動讓十字對準對位。
點雲座標資料其解析度為24 μm,完成校正後並透過實驗,結果顯示其定位的皆小於24 μm。
Abstract
Nowadays, automation assembly system with vision machine are used in a wide range of field. To meet the industrial requirements, the assembly system and robotic arms become diversification. Since vision machine plays an important role in an assembly system, the imageing processing becomes more important than before. In This this thesis, by using three-dimensional structural light is used to recognize and position the cross-mark pattern.
The research aims to develop a position cross-mark recognition method by vision machine using based on structural light for machine vision. Using three-dimensional point data through analytical algorithm and matrix transformation, camera coordinate system is calibrated to global coordinate system. With the three-dimension point data, the the position and orientation differences in position and orientation between a cross-mark and a target-mark can beare obtained by the developed algorithm processing., then using a A XYθ threetri-axis piezoelectric actuator position platformstage which compensates for the differences in position and orientation differences to achieve a the threetri- dimensional position-alignment goals. Once the alignment After is completed the position-alignment, the Z-axis stage via combined with vacuum system moduleto picks and places the parts to carry out an the array typeparts assembly system.
The normal vector of the part flat surface is a regular constant value observed from in the camera coordination. The dot product between the point data dot and the regular constant value can find outacquires the top surface of the cross-mark pattern. Then, using the proposed algorithm that proposed in this thesis to detect evaluates the cross-mark pattern center location and Z-axis angles in respect to the global coordinate systemcoordination. When the system implements with assembly parts, it can formulate the maximum moving error of estimation.
The experiment scheme contains an long-stroke X X-axis linear moving platformstage involving in a two by two plate on it and a Z Z-axis linear moving platform with vacuum nozzle. The XYθ threetri-axis piezoelectric actuator position platformstage locates mounted on the two by two plate to doprovide micron fine stepping driven to achieve the cross-mark patternassembly parts position-alignment goals.
The resolution of three dimension point data is 24 μm because of three dimensional camera capability. After the calibration of the coordinate system, the experimental output shows that the error is less than 24 μm.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
摘要 iv
ABSTRACT v
目錄 vii
圖次 ix
表次 xii
符號說明 xiii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 影像視覺 2
1.2.2影像處理校正 5
1.2.3 機器手臂分類 8
1.3研究動機 10
1.4 本文架構 12
第二章 空間定位與座標轉換 13
2.1 系統空間座標建立 13
2.1.1 座標旋轉-歐拉角公式 13
2.1.2 座標平移 14
2.1.3 流程概述 14
2.2建立三維偵測儀座標與參考座標之關係式 15
2.3演算流程 19
2.4十字特徵定位到目的位置之轉動與移動之逆運算方法 26
第三章 系統架構 36
3.1 硬體架構 36
3.1.1 三維偵測儀 37
3.1.2 直線長行程定位平台 43
3.1.3 自平衡光學防震桌 44
3.2軟體架構與通訊介面 46
3.2.1 CP2012 USB to UART 46
3.2.2 STM32F429 開發板 47
第四章 實驗與誤差探討 48
4.1實驗架設 48
4.2 實驗一、驗證座標系的轉換關係正確 49
4.2.1 X軸向與Z軸向 49
4.2.2 θZ 的角度 51
4.2.3驗證座標系結論 53
4.3實驗二、六組不同十字特徵面的零件 54
4.3.1 實驗方法 55
4.3.2 實驗結果呈現 56
4.4 實驗三、組裝零件 58
4.4.1實驗方法 59
4.4.2實驗結果呈現 59
4.4.3 誤差探討 61
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67
參考文獻 References
[1] W. A. Perkins,“A Computer Vision System that Learns to Inspect Parts,”IEEE Transactions on Pattern Analysis and Machine Intelligence , vol. 5,no. 6,November , 1983.
[2] R. C. Luo, J. H. Tzou and Y. C. Chung, “Desktop Rapid Prototyping System With Supervisory Control and Monitoring Through Internet,” IEEE Transactions on Machatronics , vol. 6, no. 4, December, 2001.
[3] G. Duan, H. C. Wang, Z. Y. Liu and Y. W. Chen,“A Machine Learning-Based Framework for Automatic Visual Inspection of Microdroll Bits in PCB Production,” IEEE Transactions on System , Man, And Cybernetics-Part C: Applications and Reviews,vol. 42, no. 6, November, 2012.
[4] B. Zhung, J. Wangt, G. Rossano, C. Mtinez and S. Kock,“Vision-guided Robot Alignment for Scalable, Flexible Assembly Automation,” IEEE Conference on Robotics and Biomimetcs , December 7-11, 2011.
[5] C. T. Palleja, C. M. Teixido, C. D. Font, R. M. Tresanchez and R. J. Palacin, “Project-Based Learning Example: Controlling an Educational Robotic Arm With Computer Vision,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje,vol 8, no 3, August, 2013.
[6] W. C. Chang, Y. H. Weng, Y. H. Tsai and C. L. Chang “Automatic Robot Assembly with Eye-in-Hand Stereo Vision,”World Congress on Intelligent Control and Automation , June 21-25, 2011.
[7] R. Y. Tsai,“A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,” IEEE Jiurnal of Robotics and Automation, vol. 3, no. 4,August, 1987.
[8] R. Y. Tsai and R. K. Lenz, “A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration,” IEEE Transctions on Robotics and Automation, vol. 5, no. 3, June, 1989.
[9] Y. Liu, T. S. Huang and O. D. Faugeras, “Determination of Camera Location from 2-D to 3-D Line and Point Correspondences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1,January, 1990.
[10 ]J. Heikkila and O. Silven, “A Four-step Camera Calibration Procedure with Implicit Image Correction,” IEEE Infotech Oulu and Department of Electrical Engineering University of Oulu ,Finland, 1997.
[11] Z. Y. Zhang, “A Flexible New Technique for Camera Calibration” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.11,November, 2000.
[12] F. Dornaika and R. Horaud, “Simultaneous Robot-World and Hand-Eye Calibration” IEEE Transactions on Robotics and Automation vol. 14, no. 4, August, 2000.
[13] H. Sakou, T. Miyatake, S. Kashioka and M. Ejiri,“A Position Recognition Algorithm for Semiconductor Alignment Based on Structural Pattern Matching,” IEEE Transaction on Acoustic, Speech and Sugnal Proxessing ,vol. 37, no. 12, December, 1989.
[14] 林志哲,黃昱勳,應用影像辨識於微步進平台之精密定位控制,第四屆精密機械製造研討會, 11月13日,2004
[15] W. Khalil and S. Guegan, “Inverse and Direct Dynamic Modeling of Fough-Stewart Robots,” IEEE Transactions on Robotics, vol. 20, no. 4, August, 2004.
[16] K. Liu, J. M. Fitzgerakd and F. L. Lewis, “Kinematic Analysis of A Stewart Platform Manipulator,” IEEE Transactions on Industrial Electronics, vol. 40, no. 2, April, 2014.
[17] G. L. Yang, I. M. Chen, W. H. Chen and W. Lin,“Kinematic Design of a Six-DOF Parallel-Kinematics Machine with Decoupled-Motion Architecture,” IEEE Transaction on Robotics, vol. 20, no. 5, October, 2004.
[18] M. Nakamura, R. Munasinghe, S. Goto and N. kyura, “Enhanced Contour Control of Scara Robot Under Torque Constraint, ” IEEE Intelligent Conforence on Robots and Systems, 1999.
[19] R. L. Hollis and A. Quaid, “An Architecture for Agile Assembly,”Proc. Am. Soc. Of Precision Engineering, 〖10〗^th Annual Mtg., October 15-19, 1995
[20] T. E. Weber and R. L. Hollis,“A Vision Based Correlator to Actively Damp Vibrations of A Coarse-Fine Manipulator, ” IEEE International Conference on Robotics and Automation, vol. 2, 1989.
[21] A. E. Quaid and R. L. Hollis, “Cooperative 2-DOF Robots for Precision Assembly,” International Conference on Robotics and Automation, vol. 3, 1996.
[22] R. L. Hollis, J. Gowdy and A. A. Rizzi “Design and Development of A Tabletop Precision Assembly System,” IEEE Mechatronics and Robotics, September 13-15,2004,
[23] A. E. Quaid, “A Miniature Mobile Parts Feeder: Operating Principles and Simulation Results, ” IEEE International Conference on Robotics and Automation, vol. 3 ,May, 1999.
[24] H. B. Brown, P. M. Muir, A. A. Rizzi , M. C. Sensi and R. L. Hollis“A Precision Manipulator Module for Assembly in A Minifactory Environment,” Intermational Conference on Intelligent Robots and Systems,, vol. 2 ,October 29, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code