Responsive image
博碩士論文 etd-0710118-121934 詳細資訊
Title page for etd-0710118-121934
論文名稱
Title
以分子動力學方法探討有機分子在雙電層電容器中的吸附與擴散行為
Investigate the Adsorption and Diffusion Behaviors of Organic Molecules in Electric Double Layer Capacitors by Molecular Dynamics Simulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-20
繳交日期
Date of Submission
2018-08-10
關鍵字
Keywords
微觀結構、分子動力學、恆定電位法、粗殼粒子模型、雙電層電容器
Microstructure, CPM, Coarse-graining, EDLC, Molecular dynamics
統計
Statistics
本論文已被瀏覽 5649 次,被下載 216
The thesis/dissertation has been browsed 5649 times, has been downloaded 216 times.
中文摘要
本研究結合恆定電位法CPM(Constant Potential Method)和分子動力學(Molecular Dynamics, MD) 模擬技術的優勢,建構一個全新的雙電層電容器模型,能透過觀察電極表面離子的吸附和內部微觀結構分子的擴散過程,預測超級電容器的電容與充放電速率。在電解液部分,利用OPLS-AA (Optimized Potentials for Liquid Simulations- all atom) 力場來描述全原子模型中原子間的作用力,OPLS-AA力場在先前的研究中已被證明能準確的描述有機液體分子,所以本研究以OPLS-AA作為力場建構拓樸結構,透過分子動力學模擬平衡並產生參考用的軌跡檔,然後參考由Voth 團隊開發的Multi-Scale Coarse-Graining(MSCG)方法,擬合出粗殼粒子模型(Coarse graining)的有效參數。在電極材料方面,採用二維石墨烯以及三維活性碳結構,做為對稱型雙電層電容器的電極材料。本研究以存储最大電容量為目標,第一步在三維週期的系統裡,比較不同濃度的平均平方位移和擴散數,結果顯示隨著濃度上升,雖然電容上升,但擴散數將下降;第二步在石墨烯電極系統裡探討不同濃度下電解液的平均數量密度分佈和電容;第三步由建構三種密度活性碳電極系統開始,我們分析了在不同電壓下三種活性碳的電極中微觀結構的分子吸附行為,發現結果與數量密度和電容的變化息息相關,本研究旨在開發一套分子模擬程序,針對超級電容器的充放電機制研究與篩選最適配的電極材料與電解液配方提供有力的工具。

關鍵字:分子動力學、雙電層電容器、粗殼粒子模型、恆定電位法、微觀結構
Abstract
Combining the advantages of constant potential method (CPM) and molecular dynamics (Molecular Dynamics, MD) simulation technology, this study constructs a new electric- double layer capacitor model that can observe the adsorption of molecules on the surface of the electrode and the diffusion process of ions internal microscopic structure, which can predicts the capacitance and charge and discharge rate of the supercapacitor. In the electrolyte part, the OPLS-AA (Optimized Potentials for Liquid Simulations All Atom) force field is used to describe the interaction between atoms in all-atom model, which was proven as good describing for organic liquid in previous work. So this study uses OPLS-AA as a force field to construct a topological structure, through molecular dynamics simulation to balance and generate a reference trajectory file, then refer to the Multi-Scale Coarse-Grained method (MSCG) developed by the Voth group, fitting the effective parameters of the Coarse grained (CG) model. In terms of electrode materials, two-dimensional graphene and three-dimensional activated carbon structure are used as electrode materials for symmetrical electric double layer capacitors. In this study, we aim to store the maximum capacitance. The first step is to compare the average squared displacement and the diffusion number of different concentrations in the three-dimensional periodic boundary system. The results show that as the concentration increases, the capacitance decreases, but the diffusion number decreases. The average number density distribution and capacitance of electrolytes in different concentrations were investigated in a graphene electrode system. The third step was to construct three density activated carbon electrode systems, we analyzed the molecular adsorption behavior of the microstructure in activated carbon electrodes at different electric potential. The results are closely related to the changes in the number density and capacitance. The aim of this project is to develop a powerful tool and provide some useful information for study the charging mechanism of supercapacitor and screen optimal electrode material and electrolyte solution.

Keywords: Molecular dynamics, EDLC, Coarse-graining, CPM, Microstructure
目次 Table of Contents
目錄
誌謝 i
中文摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 4
1.3本文架構 6
第二章 模擬方法與理論介紹 7
2.1 分子動力學理論基礎與方法 7
2.1.1 Optimized Potentials for Liquid Simulation-All Atom力場 (OPLS-AA) 8
2.1.2 運動方程式 10
2.1.3 積分法則 11
2.1.4 系綜 12
2.1.5 諾斯-胡佛恆溫法 13
2.1.6 週期性邊界 15
2.1.7 鄰近原子表列法 16
2.1.8 截斷半徑法 (Cut-off method) 16
2.1.9 維理表列法 (Verlet list) 17
2.1.10 巢室表列法 (Cell Link) 18
2.1.11 維理表列法結合巢室表列法 19
2.2 恆定電位法(Constant Potential Method) 20
2.3 平均平方位移 (Mean square displacement) 23
2.3.1 擴散係數 (Diffusion coefficient) 23
2.4 Degree of confinement (DoC) 24
2.5 孔體積與表面積之統計 26
2.6 孔徑大小分佈 26
2.7 物理模型的建構 27
2.7.1 有機溶液之全原子模型和粗殼粒子模型-電解液 27
2.7.2 建構石墨烯電極 30
2.7.3建構活性碳電極 34
第三章 粗殼粒子模型 39
3.1 Multiscale Coarse-Graining (MSCG) 39
3.2粗殼粒子模型之電解液分子 40
3.3 擬合粗殼粒子模型參數 41
3.4 驗證粗殼粒子模型參數 42
第四章 結果與討論 45
4.1電解液的性質分析 45
4.2雙電層石墨烯電容器的性質分析 47
4.3雙電層活性碳電容器的性質分析 52
第五章 結論與未來展望 62
5.1 結論 62
5.2 未來展望 64
參考文獻 65
參考文獻 References
1. 徐振庭 and 許鉦宗, 掃描式探針微影沉積金奈米粒子與硒化鎘量子點於電荷儲存之研究. 2006.
2. Obreja, V.V., On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(7): p. 2596-2605.
3. 任泰欣 and 姚品全. 以石墨烯添加提升氮化硼濕式鍍膜之導熱性. in 2014 年奈米技術與材料研討會 Nanometer-Scale Technology and Materials Symposium 2014 1-2 2014-12-12 2014-12-12 彰化. 2014. 大葉大學 材料科學與工程學系.
4. Cheng, Q., et al., Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Physical Chemistry Chemical Physics, 2011. 13(39): p. 17615-17624.
5. Wang, H., et al., Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 2009. 11(6): p. 1158-1161.
6. Liu, C., et al., Graphene-based supercapacitor with an ultrahigh energy density. Nano letters, 2010. 10(12): p. 4863-4868.
7. Biswas, S. and L.T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials, 2010. 22(20): p. 5667-5671.
8. Le, L.T., et al., Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochemistry Communications, 2011. 13(4): p. 355-358.
9. Cao, J., et al., High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. Journal of Electroanalytical Chemistry, 2013. 689: p. 201-206.
10. Xie, Y., et al., Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. Journal of materials chemistry A, 2014. 2(24): p. 9142-9149.
11. Pandolfo, A. and A. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of power sources, 2006. 157(1): p. 11-27.
12. Zheng, C., et al., Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. Journal of power sources, 2014. 258: p. 290-296.
13. Kalugin, O.N., et al., Uniform diffusion of acetonitrile inside carbon nanotubes favors supercapacitor performance. Nano letters, 2008. 8(8): p. 2126-2130.
14. Shim, Y. and H.J. Kim, Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. ACS nano, 2010. 4(4): p. 2345-2355.
15. Merlet, C., et al., On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nature materials, 2012. 11(4): p. 306.
16. Wang, Z., et al., Evaluation of the constant potential method in simulating electric double-layer capacitors. The Journal of chemical physics, 2014. 141(18): p. 184102.
17. Jorgensen, W.L. and J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 1988. 110(6): p. 1657-1666.
18. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996. 118(45): p. 11225-11236.
19. MacKerell Jr, A.D., et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. The journal of physical chemistry B, 1998. 102(18): p. 3586-3616.
20. Rapaport, D.C. and D.C.R. Rapaport, The art of molecular dynamics simulation. 2004: Cambridge university press.
21. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press.
22. Allen, M. and D. Tildesley, Computer simulation of liquids. 1987, vol. 385. New York: Oxford, 1989.
23. Reed, S.K., O.J. Lanning, and P.A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode. The Journal of chemical physics, 2007. 126(8): p. 084704.
24. Gingrich, T., Simulating surface charge effects in carbon nanotube templated ionic crystal growth. 2010, Master’s thesis (Oxford University, Oxford).
25. Wang, Z., et al., Electric potential calculation in molecular simulation of electric double layer capacitors. Journal of Physics: Condensed Matter, 2016. 28(46): p. 464006.
26. Yeh, I.-C. and M.L. Berkowitz, Ewald summation for systems with slab geometry. The Journal of chemical physics, 1999. 111(7): p. 3155-3162.
27. Tornberg, A.-K., The Ewald sums for singly, doubly and triply periodic electrostatic systems. Advances in Computational Mathematics, 2016. 42(1): p. 227-248.
28. Bard, A.J., et al., Electrochemical methods: fundamentals and applications. Vol. 2. 1980: wiley New York.
29. Parsons, R., Electrochemical nomenclature. Pure and Applied Chemistry, 1974. 37(4): p. 499-516.
30. Meunier, M., Diffusion coefficients of small gas molecules in amorphous cis-1, 4-polybutadiene estimated by molecular dynamics simulations. The Journal of chemical physics, 2005. 123(13): p. 134906.
31. Chen, H.-L., et al., Investigation of Zr and Si diffusion behaviors during reactive diffusion–a molecular dynamics study. Rsc Advances, 2015. 5(33): p. 26316-26320.
32. Merlet, C., et al., Highly confined ions store charge more efficiently in supercapacitors. Nature communications, 2013. 4: p. 2701.
33. van Meel, J.A., et al., A parameter-free, solid-angle based, nearest-neighbor algorithm. The Journal of chemical physics, 2012. 136(23): p. 234107.
34. Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2009. 18(1): p. 015012.
35. Bhattacharya, S. and K.E. Gubbins, Fast method for computing pore size distributions of model materials. Langmuir, 2006. 22(18): p. 7726-7731.
36. Forse, A.C., et al., New perspectives on the charging mechanisms of supercapacitors. Journal of the American Chemical Society, 2016. 138(18): p. 5731-5744.
37. Zhang, Z.-a., et al., Electrochemical behavior of wound supercapacitors with propylene carbonate and acetonitrile based nonaqueous electrolytes. Journal of Central South University of Technology, 2009. 16(2): p. 247-252.
38. Simon, P. and Y. Gogotsi, Capacitive energy storage in nanostructured carbon–electrolyte systems. Accounts of chemical research, 2012. 46(5): p. 1094-1103.
39. Yang, P.-Y., S.-P. Ju, and S.-M. Huang, Predicted structural and mechanical properties of activated carbon by molecular simulation. Computational Materials Science, 2018. 143: p. 43-54.
40. Stuart, S.J., A.B. Tutein, and J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. The Journal of chemical physics, 2000. 112(14): p. 6472-6486.
41. Bal, K.M. and E.C. Neyts, On the time scale associated with Monte Carlo simulations. The Journal of chemical physics, 2014. 141(20): p. 204104.
42. Mees, M.J., et al., Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion. Physical Review B, 2012. 85(13): p. 134301.
43. Neyts, E.C. and A. Bogaerts, Combining molecular dynamics with Monte Carlo simulations: implementations and applications, in Theoretical Chemistry in Belgium. 2014, Springer. p. 277-288.
44. Izvekov, S. and G.A. Voth, Multiscale coarse graining of liquid-state systems. The Journal of chemical physics, 2005. 123(13): p. 134105.
45. Lu, L., et al., Efficient, regularized, and scalable algorithms for multiscale coarse-graining. Journal of chemical theory and computation, 2010. 6(3): p. 954-965.
46. Ercolessi, F. and J.B. Adams, Interatomic potentials from first-principles calculations: the force-matching method. EPL (Europhysics Letters), 1994. 26(8): p. 583.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code