Responsive image
博碩士論文 etd-0710118-164528 詳細資訊
Title page for etd-0710118-164528
論文名稱
Title
評估穿戴式科技羽球教學輔助系統對羽球技能學習之成效–以正拍殺球為例
The Effects of the Badminton Teaching–Assisted System Using Wearable Technology to Enhance University Students’ Learning Performance of Badminton Skills - the Case Study of Smash
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
58
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-08-14
關鍵字
Keywords
類神經網路、慣性感測器、肌電流感測器、穿戴式科技、羽球教學、專家系統
expert model, neural network, Badminton teaching, wearable technology, electromyography, inertial measurement unit
統計
Statistics
本論文已被瀏覽 5927 次,被下載 567
The thesis/dissertation has been browsed 5927 times, has been downloaded 567 times.
中文摘要
本研究選擇羽球運動作為教學的主題,因羽球運動十分注重小範圍的移動及短時間的反應,大量的練習與有效教學回饋對於羽球技能的學習非常重要(Hung, Young, & Lin, 2017)。而羽球運動中,又以「正拍殺球」羽球技能最為複雜與重要,因為正拍殺球不僅需要全身的協調,且其對於羽球比賽的勝負也常常扮演關鍵的角色 (Li, Zhang, Wan, Wilde, & Shan ,2017)。因此,本研究以穿戴式科技「Myo手環」結合影片科技、專家模型與即時教學建議功能開發「穿戴式科技羽球教學輔助系統」以協助教師進行羽球教學。其中專家模型功能是透過Myo手環中的肌電流感測器與慣性感測器量測並計算羽球專家的揮拍姿勢特徵值與揮拍力道特徵值後,輸入類神經網路建置而成。教師可透過此系統比對學生與專家的羽球動作相似度百分比分數,再結合影片給予學生即時且個人化的教學建議,以進一步提升學生正拍殺球羽球技能學習成效;另外,「即時教學建議功能」能將學生的揮拍姿勢與專家姿勢比對,並給予與教師相仿的即時教學建議,以利學生自行練習。本研究之實驗分組以方便樣本為主,以中山大學的2個羽球課班級共80人做為傳統教學組(控制組)與系統協助教學組(實驗組)進行10 週實驗,其中8週為教學。研究結果顯示:1.系統協助教學能有效提升學生正拍殺球揮拍姿勢之學習成效2.系統協助教學對學生的正拍殺球揮拍力道沒有影響3.以專家的揮拍姿勢特徵值搭配教師建議,能建立可信的即時教學建議功能。因此可以推論本研究建置之教學輔助系統可以有效協助教師進行教學,系統的建置流程也可以提供未來研究參考。
Abstract
Swinging gesture and muscle strength are two key points in learning badminton techniques that instructors provide feedback according to students’ body motions. However, instructor can only provide subjective feedback on swinging gesture, not muscle strength. To effectively assist teachers to objectively teach students two badminton techniques and then enhance their badminton learning performance, we developed and evaluated a badminton teaching–assisted system using wearable technology, Myo armband. This system included three mainly functions – instantaneous recording function, automatic grading function, and instantaneous feedback function. These functions can support instructor providing objective feedback to students immediately. Automatic grading function is an expert’s motion model which was built from collection professional badminton players’ forearm strength of swinging (i.e. electromyography (EMG) signals) and swinging actions (i.e. gyroscope signals) by Myo armband. The instantaneous feedback function can automatic provide students a feedback on their swinging gesture during their badminton practice. The results showed that the badminton teaching-assisted system can effectively monitor the learners’ swinging gesture, although the system cannot effectively capture students’ arm muscle strength. The result also indicated that the instantaneous feedback function can provide reliable suggestions by combining teacher’s suggestions and experts’ swing gesture eigenvalues. Thus, badminton teaching–assisted system using Myo armband can assist the instructor to teach students learning badminton on swinging gesture.
目次 Table of Contents
論文審定書 i
論文提要 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 ix
第一章 、緒論 1
第一節、研究背景與動機 1
第二節、研究目的 3
第三節、研究問題 3
第二章 、文獻探討 4
第一節、穿戴式科技於體育教學之應用 4
第二節、Myo手環 5
第三節、類神經網路 7
第三章 、系統設計 8
第一節、羽球技能子動作切割 10
第二節、專家模型建置 15
第三節、即時教學建議功能 20
第四節、系統介面 21
第四章 、研究方法 23
第一節、研究對象 23
第二節、研究工具 23
第三節、實驗流程 24
第四節、資料分析 27
第五章 、結果與討論 28
第一節、人口統計資訊 28
第二節、正拍殺球羽球技能之學習成效分析 29
第三節、即時教學建議可信度分析 33
第四節、綜合討論 34
第六章 、結論 39
第一節、研究發現 39
第二節、研究貢獻 40
第三節、研究限制 41
第四節、未來研究 42
參考文獻 43
參考文獻 References
Al-Timemy, A. H., Khushaba, R. N., Bugmann, G., & Escudero, J. (2016). Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 650-661.
Arief, Z., Sulistijono, I. A., & Ardiansyah, R. A. (2015, September). Comparison of five time series EMG features extractions using Myo Armband. In Electronics Symposium (IES), 2015 International (pp. 11-14). IEEE.
Bächlin, M., & Tröster, G. (2012). Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive and Mobile Computing, 8(1), 68-81.
Bhattacharya, S., Roy, S., & Chowdhury, S. (2018). A neural network-based intelligent cognitive state recognizer for confidence-based e-learning system. Neural Computing and Applications, 29(1), 205-219.
Chow, J. Y., Tan, C. W. K., Lee, M. C. Y., & Button, C. (2014). Possibilities and implications of using a motion-tracking system in physical education. European Physical Education Review, 20(4), 444-464.
Chowdhury, R. H., Reaz, M. B., Ali, M. A. B. M., Bakar, A. A., Chellappan, K., & Chang, T. G. (2013). Surface electromyography signal processing and classification techniques. Sensors, 13(9), 12431-12466.
Gini, G., Arvetti, M., Somlai, I., & Folgheraiter, M. (2012). Acquisition and analysis of EMG signals to recognize multiple hand movements for prosthetic applications. Applied Bionics and Biomechanics, 9(2), 145-155.
Gupta, H. P., Chudgar, H. S., Mukherjee, S., Dutta, T., & Sharma, K. (2016). A continuous hand gestures recognition technique for human-machine interaction using accelerometer and gyroscope sensors. IEEE Sensors Journal, 16(16), 6425-6432.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.
Hung, H. C., Shwu-Ching Young, S., & Lin, K. C. (2017). Exploring the effects of integrating the iPad to improve students’ motivation and badminton skills: a WISER model for physical education. Technology, Pedagogy and Education, 1-14.
Kim, J. S., & Pan, S. B. (2017). A Study on EMG-based Biometrics. Journal of Internet Services and Information Security (JISIS), 7(2), 19-31.
Kutafina, E., Laukamp, D., Bettermann, R., Schroeder, U., & Jonas, S. M. (2016). Wearable Sensors for eLearning of Manual Tasks: Using Forearm EMG in Hand Hygiene Training. Sensors, 16(8), 1221.
Lapinski, M., Berkson, E., Gill, T., Reinold, M., & Paradiso, J. A. (2009, September). A distributed wearable, wireless sensor system for evaluating professional baseball pitchers and batters. In Wearable Computers, 2009. ISWC'09. International Symposium on (pp. 131-138). IEEE.
Lee, V. R., Drake, J., & Williamson, K. (2015). Let's get physical: K-12 students using wearable devices to obtain and learn about data from physical activities. TechTrends, 59(4), 46-53.
Li, S., Zhang, Z., Wan, B., Wilde, B., & Shan, G. (2017). The relevance of body positioning and its training effect on badminton smash. Journal of sports sciences, 35(4), 310-316.
Lindberg, R., Seo, J., & Laine, T. H. (2016). Enhancing Physical Education with Exergames and Wearable Technology. IEEE Transactions on Learning Technologies, 9(4), 328-341.
Liu, X., Sacks, J., Zhang, M., Richardson, A. G., Lucas, T. H., & Van der Spiegel, J. (2017). The Virtual Trackpad: An Electromyography-Based, Wireless, Real-Time, Low-Power, Embedded Hand-Gesture-Recognition System Using an Event-Driven Artificial Neural Network. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(11), 1257-1261.
Luinge, H. J., & Veltink, P. H. (2005). Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Medical and Biological Engineering and computing, 43(2), 273-282.
McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica: Biochemia medica, 22(3), 276-282.
Memmert, D., & Harvey, S. (2008). The game performance assessment instrument (GPAI): Some concerns and solutions for further development. Journal of Teaching in Physical Education, 27(2), 220-240.
Nymoen, K., Haugen, M. R., & Jensenius, A. R. (2015). Mumyo–evaluating and exploring the myo armband for musical interaction.
Palao, J. M., Hastie, P. A., Cruz, P. G., & Ortega, E. (2015). The impact of video technology on student performance in physical education. Technology, Pedagogy and Education, 24(1), 51-63.
Pfau, T., Witte, T. H., & Wilson, A. M. (2005). A method for deriving displacement data during cyclical movement using an inertial sensor. Journal of Experimental Biology, 208(13), 2503-2514.
Petrigliano, F. A., Borgstrom, P. H., Kaiser, W. J., McAllister, D. R., & Markolf, K. L. (2015). Measurements of tibial rotation during a simulated pivot shift manoeuvre using a gyroscopic sensor. Knee Surgery, Sports Traumatology, Arthroscopy, 23(8), 2237-2243.
Renk, E. L., Rizzo, M., Collins, W., Lee, F., & Bernstein, D. S. (2005). Calibrating a triaxial accelerometer-magnetometer-using robotic actuation for sensor reorientation during data collection. IEEE control systems, 25(6), 86-95.
Riillo, F., Quitadamo, L. R., Cavrini, F., Gruppioni, E., Pinto, C. A., Pastò, N. C., ... & Saggio, G. (2014). Optimization of EMG-based hand gesture recognition: Supervised vs. unsupervised data preprocessing on healthy subjects and transradial amputees. Biomedical Signal Processing and Control, 14, 117-125.
Sathiyanarayanan, M., & Rajan, S. (2016, January). MYO Armband for physiotherapy healthcare: A case study using gesture recognition application. In Communication Systems and Networks (COMSNETS), 2016 8th International Conference on(pp. 1-6). IEEE.
Sgrò, F., Mango, P., Pignato, S., Schembri, R., Licari, D., & Lipoma, M. (2017). Assessing Standing Long Jump Developmental Levels Using an Inertial Measurement Unit. Perceptual and Motor Skills, 124(1), 21-38.
Teng, S. L., & Paramesran, R. (2011, November). Detection of service activity in a badminton game. In TENCON 2011-2011 IEEE Region 10 Conference (pp. 312-315). IEEE.
Umek, A., Tomažič, S., & Kos, A. (2015). Wearable training system with real-time biofeedback and gesture user interface. Personal and Ubiquitous Computing, 19(7), 989-998.
Vranjković, V. S., Struharik, R. J., & Novak, L. A. (2015). Hardware acceleration of homogeneous and heterogeneous ensemble classifiers. Microprocessors and Microsystems, 39(8), 782-795.
Wang, L., & Buchanan, T. S. (2002). Prediction of joint moments using a neural network model of muscle activations from EMG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(1), 30-37.
Wulf, G., Shea, C., & Lewthwaite, R. (2010). Motor skill learning and performance: a review of influential factors. Medical education, 44(1), 75-84.
Zarchi, M. S., Bushehri, S. F., & Dehghanizadeh, M. (2018). SCADI: A standard dataset for self-care problems classification of children with physical and motor disability. International journal of medical informatics, 114, 81-87.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code