Responsive image
博碩士論文 etd-0711102-114707 詳細資訊
Title page for etd-0711102-114707
論文名稱
Title
以溫差法使用六氟矽酸與氨水成長氟氮氧化矽薄膜之研究
Fluorinated Oxynitride Films Prepared by Temperature-Difference Deposition Method Using the Aqueous Solution of Hydrofluorosilicic Acid and Ammonium Hydroxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-26
繳交日期
Date of Submission
2002-07-11
關鍵字
Keywords
六氟矽酸、氨水、氟氮氧化矽、溫差法、溫差液相沈積法
NH4OH, TD, H2SiF6, SiOF, TD-LPD, SiON
統計
Statistics
本論文已被瀏覽 5718 次,被下載 0
The thesis/dissertation has been browsed 5718 times, has been downloaded 0 times.
中文摘要
液相沈積法有低溫製程、成本便宜、優良的階梯覆蓋性、選擇性成長、便宜的沈積系統等優點,這些優點使得液相沈積法在IC製程中有多方面的應用。以液相沈積法成長氟氧化矽是一種有潛力去取代傳統成長氟氧化矽方式的方法,但是,不很低的介電常數和不很好的電性等缺點仍然存在於液相沈積法成長的氟氧化矽製程裡。為了改善這些缺點,在本實驗中,掺雜氨水於溶液中,靠著溫差液相沈積法可以成長出高品質和低介電常數的氟氮氧化矽薄膜於矽基板上。
在研究中,當氨水濃度在0.1~0.8 M、沈積溫度在23~40 °C範圍時,成長速率可以被有效地控制在90~550 Å/h。當氨水濃度在0.8 M,沈積溫度改變時,折射係數可以保持在1.431,P-etch速率可以保持在18.3和19.2 Å/s間。最佳的實驗結果是在氨水濃度0.8 M時,氨水濃度高於或低於0.8 M時將會有較差的電特性表現。
從二次離子質譜儀縱深分析得知,我提出一個沈積機制的模型,成長的薄膜是由豐富氮原子累積的膜及較缺乏氮濃度的膜所組成,豐富的氮累積在薄膜和基板介面上的特點展現了良好的電性。
當氨水濃度在0.8 M、沈積溫度在40 °C是最佳條件且薄膜厚度在800 Å可以得到最好的物性、化性、電性表現。薄膜中氟的含量可高達到9.8 %,介電常數可以降低到3.07.


Abstract
The advantages of LPD method, low temperature process, low cost, conformal growth (good step coverage), selective growth and inexpensive deposition system make the method of LPD versatile in IC fabrication. LPD-SiOF is a potential method to replace traditional method of SiOF deposition. But, some drawbacks, including slightly low dielectric constant and poor performance of J-E relationship, still exist in LPD-SiOF process. In order to improve these shortcomings, with incorporating NH4OH into the LPD solution in this experiment, the SiOF:N film with high quality and low dielectric constant can be grown on Si by the TD-LPD method.
In this study, the growth rate can be controlled well within 90~550 Å/h corresponding to the NH4OH concentration range of 0.1~0.8 M at the temperature range of 23~40 °C. As TD-LPD-SiOF:N film deposited with 0.8 M NH4OH incorporation, the refractive index for can be kept at a constant 1.431 and the P-etch rate can be kept between 18.3 and 19.2 Å/s during the deposition temperature changes.
The best experimental condition is found that incorporating 0.8 M NH4OH will get good results. If the concentration of 0.8 M is higher or lower than 0.8 M, the electrical characteristic will become poor.
A model for TD-LPD-SiOF:N deposition mechanism is proposed. From the analysis of SIMS depth profile, the deposited film can be suggested that it is a combination of N-less LPD-SiOF film and N-rich accumulated interfacial layer. The properties of N-rich accumulated layer at the interface show the least effective oxide charges and lowest leakage current density.
As the thickness of TD-LPD-SiOF:N film is 800 Å, the film has the best electrical characteristic. When the thickness is below or above 800 Å, all the properties become poor. TD-LPD-SiOF:N film deposited at 40 °C with 0.8 M NH4OH incorporation with a thickness of 800 Å has the best physical, chemical, electrical properties. The F content for deposited film can reach 9.8 atom %. The dielectric constant can drop to about 3.07.


目次 Table of Contents
CONTENTS I
LIST OF FIGURES IV
ABSTRACT VIII

1. Introduction 1
1-1 Background of Fluorinated Silicon Dioxide 1
1-2 Background of TD-LPD-SiOF 2
1-3 Motivation of TD-LPD-SiOF:N 3
1-4 Mechanisms of TD-LPD-SiOF:N 4
1-5 Advantages of LPD 5

2. Experiments 7
2-1 Deposition System 7
2-2 Deposition Procedures 8
2-2-1 Si Wafer Cleaning Procedures 8
2-2-2 Preparation of Deposition Solution 8
2-2-3 Film Growth 10
2-3 Fabrication of Metal-oxide-semiconductor Structure 10
2-4 Characteristics 10
2-4-1 Physical and Chemical Properties 10
2-4-2 Electrical Properties 11


3. Results and Discussion 13
3-1 Physical Properties of TD-LPD-SiOF:N Film 13
3-1-1 Deposition Rate and Refractive Index as a Function of Molarity of NH4OH 13
3-1-2 Deposition Rate as a Function of Deposition Temperature 15
3-1-3 Refractive Index as a Function of Deposition Temperature 16
3-1-4 P-etch as a Function of Deposition Temperature 17
3-1-5 SEM View of TD-LPD-SiOF:N Film 18
3-2 Chemical properties of TD-LPD-SiOF:N Film 18
3-2-1 XPS Analysis for the F Content 18
3-2-2 XPS Analysis for the N Content 19
3-2-3 AES Survey Scan and Depth Profile 20
3-2-4 SIMS Depth Profile 21
3-2-5 Analysis of FTIR Spectra 22
3-3 Model for Deposition Mechanism 23
3-4 Electrical Properties of TD-LPD-SiOF:N Film 24
3-4-1 The C-V Measurement of TD-LPD-SiOF:N Films Deposited at 23 °C 24
3-4-2 The J-E Relationship of TD-LPD-SiOF:N Films Deposited at 23 °C 25
3-4-3 Dielectric Constant of TD-LPD-SiOF:N Film 26
3-4-4 The C-V Measurement of TD-LPD-SiOF:N Films Deposited at 40 °C 27
3-4-5 The J-E relationship of TD-LPD-SiOF:N Films Deposited at 40 °C 28

3-5 Properties of TD-LPD-SiOF:N Films as a Function of Deposition Time 30
3-5-1 Thickness as a Function of Deposition Time 30
3-5-2 SEM View of the Ultrathin Film 30
3-5-3 Dielectric Constant and Flatband Voltage Shift 30
3-5-4 The J-E Relationship with Different Thickness 31
3-6 Analysis of FTIR Spectra at Various Annealing Temperatures 32
3-6-1 Various Annealing Temperatures for 30 min in Ambient N2 32
3-6-2 Various Annealing Temperatures for 90 min in Ambient N2 33

4. Conclusions 35

FIGURES 37~72
REFERENCES 73~81

參考文獻 References
1. K. M. Chang, S. W. Wang, T. H. Yeh, C. H. Li, and J. J. Luo, “Leakage Performance and Breakdown Mechanism of Silicon-Rich Oxide and Fluorinated Oxide Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition”, J. Electronchem. Soc., vol. 144, pp. 1754, 1997.
2. Y. Nishioka, E. F. da Silva, Jr., Y. Wang, and T. P. Ma, “Dramatic Improvement of Hot-Electron-Induced Interface Degradation in MOS Structures Containing F or Cl in SiO2”, IEEE Electron Device Lett., vol. 9, pp. 38, 1988.
3. E. F. Dasilva, Y. Nishioka, and T. P. Ma, “Radiation Response of MOS Capacitors Containing Fluorinated Oxides”, IEEE Trans. Nucl. Sci., vol. 34, pp. 1190, 1987.
4. K. Inoue, M. Nakamura, M. Okuyama, and Y. Hamakawa, “Reduction of Interface State Density by F2 Treatment in a Metal-Oxide-Semiconductor Diode Prepared from a Photochemical Vapor-Deposited SiO2 Film”, Appl. Phys. Lett., vol. 55, pp. 2402, 1989.
5. M. J. Shapiro, S. V. Nguyen, T. Matsuda, and D. Dobuzinsky, “CVD of Fluorosilicate Glass for ULSI Applications”, Thin Solid Films, vol. 270, pp. 503, 1995.
6. S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada, and H. Komiyama, “Reduction Mechanism in the Dielectric Constant of Fluorine Doped Silicon Dioxide Film”, J. Electronchem. Soc., vol. 144, pp. 2531, 1997.
7. T. Usami, K. Shimokawa, and M. Yoshimaru, “Low Dielectric Constant Interlayer Using Fluorine Doped Silicon Oxide”, Jpn. J. Appl. Phys., vol. 33, pp. 408, 1994.
8. H. Miyajima, R. Katsumata, Y. Nakasaki, Y. Nishiyama, and N. Hayasaka, “Water-Absorption Properties of Fluorine Doped SiO2 Films Using Plasma Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 35, pp. 6217, 1996.
9. F. H. P. M. Habraken and A. E. T. Kuiper, “Silicon Nitride and Oxynitride Films”, Mater. Sci. and Eng. Rev., vol. 12, pp. 123, 1994.
10. C. S. Lai, T. F. Lei, and C. L. Lee, “The Electrical Characteristics of Polysilicon Oxide Grown in Pure N2O”, IEEE Elcetron Device Lett., vol. 16, pp. 385, 1995.
11. Z. Q. Yao, H. B. Harrison, S. Dimitrijev, and Y. T. Yeow, “The Electrical Properties of Sub 5nm Oxynitride Dielectrics Prepared in a Nitric-Oxide Ambient Using Rapid Thermal Processing”, IEEE Electron Device Lett., vol. 15, pp. 516, 1995.
12. T. Hori, H. Iwasaki, and K. Tsuji, “Electrical and Physical Properties of Ultra-thin Reoxidized Nitrided Oxides Prepared by Rapid Thermal Processing”, IEEE Trans. Electron Devices, vol. 36, pp. 340, 1989.
13. H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, J. Electronchem. Soc., vol. 135, pp. 2013, 1988.
14. P. H. Chang, C. T. Huang, and J. S. Shie, “On Liquid-Phase Deposition of Silicon Dioxide by Boric Acid Addition”, J. Electronchem. Soc., vol. 144, pp. 1144, 1987.
15. M. P. Houng, Y. H. Wang, N. F. Wang, C. J. Huang and W. J. Chang, “Near Room-Temperature Growth of SiO2 Films for P-HgCdTe Passivation by Liquid-Phase Deposition”, Jpn. J. Appl. Phys., vol. 36, pp. L696, 1997.
16. C. J. Huang, M. P. Houng, Y. H. Wang, N. F. Wang and W. J. Chang, “Effect of Fluorine Concentration on the Metal Insulator Semiconductor (MIS) Solar-Cell Output Performance by Liquid-Phase Deposition”, Jpn. J. Appl. Phys., vol. 37, pp. L158, 1998.
17. N. F. Wang, W. J. Chang, M. P. Houng, Y. H. Wang and C. J. Huang, “Deposition of High Quality Silicon Dioxide on Hg1-xCdxTe by Low Temperature Liquid-Phase Deposition Method”, J. Vac. Sci. Technol. A, vol. 17, pp. 102, 1999.
18. C. F. Yeh, C. L. Chen, and G. H. Lin, “The Physicochemical Properties and Growth-Mechanism of Oxide (SiO2-xFx) by Liquid-Phase Deposition with H2O Addition Only”, J. Electrochem. Soc., vol. 141, pp. 3177, 1994.
19. C. F. Yeh and C. L. Chen, “Controlling Fluorine Concentration and Thermal Annealing Effect on Liquid-Phase Deposited SiO2-xFx Films”, J. Electronchem. Soc., vol. 142, pp. 3579, 1995.
20. C. F. Yeh, Y. C. Lee, and S. C. Lee, “Reliability of Fluorinated Silicon Oxide Film Prepared by Temperature Difference-Based Liquid-Phase Deposition”, J. Electrochem. Soc., vol. 147, pp. 4268, 2000.
21. C. F. Yeh, Y. C. Lee, K. H. Wu, Y. C. Su, and S. C. Lee, “Comprehensive Investigation on Fluorosilicate Glass Prepared by Temperature-Difference-Based Liquid-Phase Deposition”, J. Electrochem. Soc., vol. 147, pp. 330, 2000.
22. H. Kudo, R. Shinohara, S. Takeishi, N. Awaji, and M. Yamada, “Densified SiOF Film Formation for Preventing Water-Absorption”, Jpn. J. Appl. Phys., vol. 35, pp. 1583, 1996.
23. K. M. Chang, S. W. Wang, T. H. Yeh, C. H. Li, and J. J. Luo, “Leakage Performance and Breakdown Mechanism of Silicon-Rich Oxide and Fluorinated Oxide Prepared by Electron Cyclotron Resonance Chemical Vapor Deposition”, J. Electronchem. Soc., vol. 144, pp. 1754, 1997.
24. S. R. Kaluri and D. W. Hess, “Nitrogen Incorporation in Thin Silicon Oxides in a N2O Plasma Effects of Processing Conditions”, J. Electronchem. Soc., vol. 145, pp. 662, 1998.
25. R. Swope, W. S. Yoo, J. Hsieh, S. Shuchmann, F. Nagy, H. te Nijenhuis, and D. Mordo, “Improvement of Adhesion Properties of Fluorinated Silica Glass Films by Nitrous Oxide Plasma Treatment”, J. Electronchem. Soc., vol. 144, pp. 2559, 1997.
26. F. H. P. M. Habraken and A. E. T. Kuiper, “Silicon Nitride and Oxynitride Films”, Mater. Sci. & Eng. R, vol. 12, pp. 3179, 1994.
27. T. Goda, H. Nagayama, A. Hishinuma, and H. Kawahara, Mater. Res. Soc. Symp. Proc., 105, 283 (1988).
28. A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara, “Formation of Silicon Dioxide Films in Acidic Solution”, Applied Surface Sci., vol. 48, pp. 405, 1991.
29. C. F. Yeh and C. L. Chen, “Bond-Structure Changes of Liquid-Phase Deposited Oxide (SiO2-xFx) on N2 Annealing”, Appl. Phys. Lett., vol. 66, pp. 938, 1995.
30. T. Homma, T. Goda, et al., “A New Interlayer Formation Technology for Completely Planarized Multilevel Interconnection by Using LPD”, in Symposium on VLSI Technology, pp. 3, 1990.
31. S. K. Ghandhi, “Etching and Cleaning”, in VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.
32. M. K. Lee, S. Y. Lin, and J. M. Shyr, “Charateristics of Oxynitride Prepared by Liquid Phase Depostion”, J. Electrochem. Soc., vol. 148, pp. F1, 2001.
33. M. K. Lee, B. H. Lei, and C. H. Lin, “Oxynitride Prepared by Liquid Phase Deposition”, Jpn. J. Appl. Phys., vol. 36, pp. L979, 1997.
34. Y. W. Bae, B. Gallois, B. J. Wilkens, and J.E. Olsen, “Deposition and Chemical-Composition of Silicon Oxynitride from Methylsilazane in Ammonia and Nitrous-Oxide”, J. Electrochem. Soc., vol. 145, pp. 1902, 1998.
35. O. Sanchez, M. A. Aguilar, C. Falcony, J. M. Martinezduart, and M. H. Velez, “Characterization of Sioxny Films Deposited from SiCl4 by Remote Plasma-Enhanced Chemical-Vapor-Deposition”, Thin Solid Films, vol. 317, pp. 149, 1998.
36. R. Machorro, E. C. Samano, G. Soto, F. Villa, and L. Cotaaraiza, “Modification of Refractive-Index in Silicon Oxynitride Films During Deposition”, Mater. Lett., vol. 45, pp. 47, 2000.
37. S. Lee and J. W. Park, “Effect of fluorine on dielectric properties of SiOF films”, J. Appl. Phys., vol. 80, pp. 5260, 1996.
38. S. Dimitrijev, D. Sweatman and H. B. Harrison, “Model for Dielectric Growth on Silicon in a Nitrous-Oxide Environment”, Appl. Phys. Lett., vol. 62, pp. 1539, 1993.
39. C. Y. Chang and S. M. Sze, ULSI Technology, McGraw-Hill, New York, pp. 60, 1996.
40. W. A. P. Claassen, H. A. J. T. Vanderpol, A. H. Goemans, and A. E. T. Kuiper, “Characterization of Silicon Oxynitride Films Deposited by Plasma-Enhanced CVD”, J. Electrochem. Soc., vol. 133, pp. 1458, 1986.
41. T. Homma, T. Katoh, Y. Yamada, and Y. Murao, “A Selective SiO2 Film-Formation Technology Using Liquid-Phase Deposition for Fully Planarized Multilevel Interconnections”, J. Electrochem. Soc., vol. 140, pp. 2410, 1993.
42. M. K. Lee, C. H. Lin, B. H. Lei, and C. D. Yang, “Improvement of Effective Charges in Oxynitride Prepared by Liquid Phase Deposition on Silicon”, Jpn. J. Appl. Phys., vol. 37, pp. L53, 1998.
43. P. J. Wright and K. C. Saraswat, “The Effect of Fluorine in Silicon Dioxide Gate Dielectrics”, IEEE Trans. Electron Devices, vol. 36, pp. 879, 1989.
44. E. Cartier, D. A. Buchanan, and G. J. Dunn, “Atomic Hydrogen-Induced Interface Degradation of Reoxidized-Nitrided Silicon Dioxide on Silicon”, Appl. Phys. Lett., vol. 64, pp. 901, 1994.
45. W. S. Lu and J. G. Hwu, “Preparation of Fluorinated Gate Oxides by Liquid-Phase Deposition Following Rapid Thermal-Oxidation”, Appl. Phys. Lett., vol. 66, pp. 3322, 1995.
46. W. J. Chang, M. P. Houng, and Y. H. Wang, “Trap Concentration Dependence on the Electrical Properties of Annealed Ultrathin Fluorinated Silicon Oxides”, Jpn. J. Appl. Phys., vol. 40, pp. 1300, 2001.
47. G. Q. Lo, W. C. Ting, D. K. Shih, and D. L. Kwong, “Study of Interface State Generation in Thin Oxynitride Gate Dielectrics Under Hot-Electron Stressing”, Electron. Lett., vol. 25, pp. 1354, 1989.
48. S. Ezhilvalavan and T. Y. Tseng, “Conduction mechanisms in amorphous and crystalline Ta2O5 thin films”, J. Appl. Phys., vol. 83, pp. 4797, 1998.
49. D. Landheer, G. C. Aers, G. I. Sproule, R. Khatri, P. J. Simpson, and S. C. Gujrathi, “Positron Study of Plasma-Enhanced Chemical Vapor Deposited Silicon-Nitride Films”, J. Appl. Phys., vol. 78, pp. 2568, 1995.
50. D. K. Basa, M. Bose, and D. N Bose, “Positron Study of Plasma-Enhanced Chemical Vapor Deposited Silicon-Nitride Films”, J. Appl. Phys., vol. 87, pp. 4324, 2000.
51. S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 2nd Ed., 1981.
52. Z. J. Luo, X. Guo, and T. P. Ma, “Temperature dependence of gate currents in thin Ta2O5 and TiO2 films”, Appl. Phys. Lett., vol. 79, pp. 2803, 2001.
53. P. W. Lee, S. Mizuno, A. Verma, H. Tran, and Nguyen, “Dielectric Constant and Stability of Fluorine Doped Plasma-Enhanced Chemical Vapor Deposited SiO2 Thin Films”, J. Electrochem. Soc., vol. 143, pp. 2015, 1996.
54. S. Lee and J. W. Park, “Effect of fluorine on moisture absorption and dielectric properties of SiOF films”, Materials Chemistry and Physics, vol. 53, pp. 150, 1998.
55. N. Rausch and E. P. Burte, “Thin TiO2 Films Prepared by Low Pressure Chemical Vapor Deposition”, J. Electrochem. Soc., vol. 140, pp. 145, 1993.
56. V.G. Erkov, S.F. Devyatova, E.L. Molodstova, T.V. Malsteva, and U.A. Yanovskii, “Si–TiO interface evolution at prolonged annealing in low vacuum or N2O ambient”, Applied Surface Science, vol. 166, pp. 51, 2000.
57. T. Tamura, J. Sakai, M. Satoh, Y. Inoue, and H. Yoshitaka, “Structural and Electrical Properties for Fluorine Doped Silicon Oxide Films Prepared by Biased Helicon-Plasma Chemical Vapor Deposition”, Jpn. J. Appl. Phys., vol. 36, pp. 1627, 1997.
58. R. G. Wilson, “Boron, Fluorine, and Carrier Profiles for B and Bf2 Implants into Crystalline and Amorphous Si”, J. Appl. Phys., vol. 54, pp. 6879, 1983.
59. C. G. Vandewalle, F. R. Mcfeely, and S. T. Pantelides, “Fluorine-Silicon Reactions and the Etching of Crystalline Silicon”, Phys. Rev. Lett., vol. 61, pp. 1867, 1988.
60. B. G. Yu, N. Konuma, E. Arai, Y. Ohji, and Y. Nishioka, “Thermal-Behavior of Fluorine in SiO2 and Si Investigated by the F-19 (P, Alpha-Gamma) O-16 Reaction and Secondary Ion Mass Spectrometry”, J. Appl. Phys., vol. 70, pp. 2408, 1991.
61. S. Hasegawa, A. Saito, J. A. Lubguban, and Y. Kurata, “Effects of Nitrogen Addition to Fluorinated Silicon Dioxide Films”, Jpn. J. Appl. Phys., vol. 37, pp. 4904, 1998.
62. G. Lucovsky, J. T. Fitch, D. V. Tsu, and S. S. Kim, “Atomic-Structure in SiO2 Thin Films Deposited by Remote Plasma-Enhanced Chemical Vapor Deposition”, J. Vac. Sci. Technol. A, vol. 7, pp. 1136, 1989.
63. J. T. Fitch, G. Lucovsky, E. Kobeda, and E. A. Irene, “Effects of Thermal History on Stress-Related Properties of Very Thin Films of Thermally Grown Silicon Dioxide”, J. Vac. Sci. Technol. B, vol. 7, pp. 153, 1989.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.91.79.134
論文開放下載的時間是 校外不公開

Your IP address is 3.91.79.134
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code