Responsive image
博碩士論文 etd-0711102-145020 詳細資訊
Title page for etd-0711102-145020
論文名稱
Title
Al2O3/5 vol% SiC顯微結構觀察
Microstructure of Al2O3/5 vol% SiC with Transmission Electron Microscope
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-21
繳交日期
Date of Submission
2002-07-11
關鍵字
Keywords
電子顯微鏡、氧化鋁、氧化矽
alumina, silicon cardide, TEM
統計
Statistics
本論文已被瀏覽 5670 次,被下載 31
The thesis/dissertation has been browsed 5670 times, has been downloaded 31 times.
中文摘要
本研究是利用穿透式電子顯鏡探討5 vol.%氧化矽/氧化鋁複合材料燒結體之微結構..
傳統球磨製程能得到粒徑均勻(>200nm)的混合粉體,在16000C/1h,30MPa壓力的氮氣中燒結.
>200nm的氧化矽位在晶界上,<100nm的氧化矽在晶粒內,氧化矽顆粒阻礙晶界成長,造成晶界多為曲線.有大量的次晶界產生,其主要有兩種型式,(1)傾斜晶界(tilting boundary)和(2)差排網(network).前者形成約0.10的低角度晶度,後者形是大於10.大量差排也被觀察,主要是<1120>,其它<1010>,<1011>和   <2021>也觀察到.

Abstract
Hot-pressing sintering Al2O3/5 vol% SiC gets detail research. Sub-boundaries and dislocations observed in grains. Most Burgers vectors are <1120>.
目次 Table of Contents
一.文獻回顧…………………………………………………………..1
1-1簡介 1
1-2氧化鋁結構 4
1-3差排和滑移系統 5
1-4第二相的拖曳力 11
1-5電子顯微鏡繞射圖 13
1-6研究目標 13
二.實驗方法 14
2-1粉末的製備 14
2-2試片的製備 14
2-3密度量測和結晶相鑑定 15
2-4電子顯微鏡試片的製備 15
2-5微結構觀察 16
三.實驗結果 17
3-1粉體材料 17
3-2相鑑定 17
3-3燒結密度 17
3-4微結構觀察 17
3-4-1氧化鋁和氧化鋁/氧化矽的微觀組織 17
3-4-2氧化矽的拖曳效應 18
3-4-3滑移系統 18
3-5破裂模式 21
四.討論 22
4-1d-spacing變化 22
4-2破壞模式 22
4-3差排結構 23
4-4次晶界 24
五.結論 26
六.未來研究方向 27
參考文獻 28
參考文獻 References
1. F. F. Lange, Transformation Toughening: Part 1 Size Effect Associated with the Thermodynamics of Constrained Transformations. J. Mater. Sci., 1982. 17: p. 225-34.
2. F. F. Lange, Transformation Toughening: Part 2 Contribution to Fracture Toughness. J. Mater. Sci., 1982. 17: p. 235-39.
3. F. F. Lange, Transformation Toughening: Part 3 Experimental Observations in the ZrO2-Y2O3 System. J. Mater. Sci., 1982. 17: p. 240-46.
4. F. F. Lange, Transformation Toughening: Part 4 Fabrication, Fracture Toughness and Strength of Al2O3-ZrO2 Composites. J. Mater. Sci., 1982. 17: p. 247-54.
5. F. F. Lange, Transformation Toughening: Part 5 Effect of Temperature and Alloy on Fracture Toughness. J. Mater. Sci., 1982. 17: p. 255-62.
6. O. Sbaizero, G. Pezzotti and T. Nishida, Fracture Energy and R-Curve Behavior of AlO/Mo Composites. Acta Mater., 1998. 46(2): p. 681-87.
7. K. Niihara and A. Nakahira, Strengthening of Oxide Ceramics by SiC and Si3N4 Dispersions. in Proceedings of the Third International Symposium on Ceramic Materials and Components for Engines. 1988. Westerville, OH: American Ceramic Society.
8. K. Niihara, A. Nakahira, G. Sasaki and M. Hirabayashi,  Development of Strong Al2O3/SiC Composites. in Proceedings of the International Meeting on Advanced Materials. 1989. Tokyo, Japan: Materials Research Society.
9. K. Niihara, New Design of Structural Ceramics -- Ceramic Nanocomposites. J. Ceram. Soc. Jpn., 1991. 99(10): p. 974-82.

10. D. Sciti and A. Bellosi, Oxidation Behaviour of Alumina-Silicon Carbide Nanocomposites. J. Mater. Sci., 1998. 33: p. 3823-30.
11. L. C. Stearns, J. Zhao and M. P. Harmer, Processing and Microstructure Development in Al2O3-SiC Nanocomposites. J. Eur. Ceram. Soc., 1992. 10: p. 473-77.
12. J. Zhao, L. C. Stearns, M. P. Harmer, H. M. Chan and G. A. Miller, Mechanical Behavior of Alumina-Silicon Carbide "Nanocomposites". J. Am. Ceram. Soc., 1993. 76(2): p. 503-10.
13. J. Otsuka, S. Iio, Y. Tajima, M. Watanabe and K. Tanaka, strengthening Mechanism in AlO/SiC Particulate Composites. J. Ceram. Soc. Jpn, 1994. 102(1): p. 29-34.
14. C. E. Borsa, S. Jiao, R. I. Todd and R. J. Brook, Processing and Properties of Al2O3/SiC Nanocomposites. J. Microsc., 1994. 177(3): p. 305-12.
15. H. Z. Wu, C. W. Lawrence, S. G. Roberts and Derby, The Strength of AlO/SiC Nanocomposites after Grinding and Annealing. Acta Mater., 1998. 46(11): p. 3839-48.
16. L. Carroll, M. Sternitzke and B. Derby, Silicon Carbide Particle Size Effect in Alumina-Based Nanocomposites. Acta Mater., 1996. 44(11): p. 4543-52.
17. M. Hoffmanl and J. Rodel, Suggestion for Mechanism of Strengthening of Nanotoughened Ceramics. J. Ceram. Soc. Jpn, 1997. 105(12): p. 1086-1090.
18. S. Jiao, M. Jenkins and R. W. Davidge, Electron Microscopy of Crack/Particle Interactions in Al2O3/SiC Nanocomposites. J. Microsc., 1996. 185(2): p. 259-64.
19. S. Jiao, M. L. Jenkins and R. W. Davidge, Interfacial Fracture Energy-Mechanical Behavior Relationship in Al2O3/SiC and Al2O3/TiN Nanocomposites. Acta Mater., 1997. 45(1): p. 149-56.
20. M. Sternitzke, Review: Structural Ceramic Nanocomposites. J. Eur. Ceram. Soc., 1997. 17: p. 1061-82.
21. T. Ohji, Y. K. Jeong, Y. H. Choa and K. Niihara, Strengthening and Toughening Mechanisms of Ceramic Nanocomposites. J. Am. Ceram. Soc., 1998. 81(6): p. 1453-60.
22. M. Sternitzke, B. Derby and R. J. Brook, Alumina/Silicon Carbide Nanocomposites by Hybrid Polymer/Powder Processing : Microstructures and mechanical properties. J. Am. Ceram. Soc., 1998. 81(1): p. 41-48.
23. A. M. Thompson, H. M. Chan and M. P. Harmer, Crack Healing and Stress Relaxation in Al2O3/SiC "Nanocomposites". J. Am. Ceram. Soc., 1995. 78(3): p. 567-71.
24. I. Levin, W. D. Kaplan and D. G. Brandon, Effect of SiC Submicronmeter Particle Size and Content on Fracture Toughness of Alumina-SiC "Nanocomposites". J. Am. Ceram. Soc., 1995. 78(1): p. 254-56.
25. J. E. Blendell and R. L. Cobel, Measurement of Stress Due to Thermal Expansion Anisotropy in Al2O3. J. Am. Ceram. Soc., 1982. 65(3): p. 174-78.
26. M. L. Kronberg, Plastic Deformation of Single Crystals of Sapphire: Basal Slip and Twinning. Acta Met., 1957. 5(9): p. 507-24.
27. R32/C, No. 167. International Tables for X-Ray Crystallography. Vol. I. 1962, Birmingham, England: Kynoch Press. 275.
28. J. D. Snow and A. H. Heuer, Slip Systems in Al2O3. J. Am. Ceram. Soc., 1973. 56(3): p. 153-157.
29. Wyckiff, Crystal Structures. 2nd ed. 1963, New York: Ralph W. G.
30. J. Cadoz and B. Pellissier, Influence of Three-Ford Symmetry on Pyramidal Slip of Alumina Single Crystal. Scrip. Metal., 1976. 10: p. 597-600.
31. G. W. Groves and A. Kelly, Independent Slip Systems in Crystal. Philo. Mag., 1963. 8: p. 877-87.
32. R. F. Firestone and A. H. Heuer, Yield Point of Sapphire. J. Am. Ceram. Soc., 1973. 56(3): p. 136-39.
33. B. J. Pletka, T. E. Mitchell and A. H. Heuer, Dislocation Structures in Sapphire Deformed by Basal Slip. J. Am. Ceram. Soc., 1974. 57(9): p. 388-93.
34. R. L. Bertolotti and W. D. Scott, Compressive Crepp of Al2O3 Single Crystals. J. Am. Ceram. Soc., 1971. 54(6): p. 286-91.
35. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Effect of Temperature on the Fracture of Sapphire. Philo. Mag., 1973. 28(4): p. 783-96.
36. D. J. Gooch and G. W. Groves, Prismatic Slip in Sapphire. J. Am. Ceram. Soc., 1972. 55(2): p. 105.
37. D. M. Kotchick and R. E. Tressler, Deformation Behavior of Sapphire Via the Prismatic Slip System. J. Am. Ceram. Soc., 1980. 63(7-8): p. 429-34.
38. J. Castaing, J. Cadoz, and S. H. Kirby, Prismatic Slip of AlO Single Crystals Below 1000oC in Compression Under Hydrostatic Pressure. J. Am. Ceram. Soc., 1981. 64(9): p. 504-11.
39. J. Cadoz, J. P. Riviere and J. Castaing, T.E.M. Observations of Dislocation in AlO after Prism Plane Slip at Low Temperature under Hydrostatic Pressure, in Deformation of Ceramic Materials II. 1984, Plenum Press: New York. p. 213-22.
40. R. F. Firestone and A. H. Heuer, Creep Deformation of 0o Sapphire. J. Am. Ceram. Soc., 1976. 59(1-2): p. 24-29.
41. R. E. Tressler and D. J. Barber, Yielding and Flow of c-Axis Sapphire Filaments. J. Am. Ceram. Soc., 1974. 57(1): p. 13-19.
42. R. E. Tressler and D. J. Michall, Dynamics of Flow of c-Axis Sapphire, in Deformation of Ceramic Materials, R.C.B.a.R.E. Tressler, Editor. 1975, Plenum Publishing Corp. p. 195-215.

43. B. J. Hockey, Pyramidal Slip on {1123} <1100> and Basal Twinning in Al2O3, in Deformation of Ceramic Materials, R.C.B.a.R.E. Tressler, Editor. 1975, Plenum Publishing Corp. p. 167-79.
44. P. D. Bayer and R. E. Cooper, J. Mater. Sci., 1967. 2: p. 301.
45. S. J. Chen and D. G. Howitt, Observations of partial Dislocations and Basal Twin Boundaries in Shock-Wave-Deformed Sapphire. Philo. Mag. A, 1998. 78(3): p. 765-76.
46. D. J. Gooch and G. W. Groves, Non-Basal Slip in Sapphire. Philos. Mag., 1973. 28(3): p. 623-37.
47. B. Y. Farber, S. Y. Yoon, K.P. D. Lagerlof and A. H. Heuer, Microplasticity during High Temperature Indentation and the Peierls Potential in Sapphire (a-Al2O3) Single Crystals. Phys. Stat. Sol. (a), 1993. 137: p. 485-98.
48. T. E. Mitchell, B. J. Pletka, D. S. Phillips and A. H. Heuer, Climb Dissociation of Dislocations in Sapphire (a-Al203). Philo. Mag., 1976. 34(3): p. 441-51.
49. J. B. Bilde-Sqrensen, A. R. Tholen, D. J. Gooch and G. W. Groves, Structure of the <0110> Dislocation in Sapphire. Philo. Mag., 1976. 33(6): p. 877-89.
50. K. D. P. Lagerlof, T. E. Mitchell, A. H. Heuer, J. R. Riviere, J. Cadoz, J. Castaing and D. S. Phillips, Stacking Fault Energy in Sapphire. Acta Metall., 1984. 32(1): p. 97-105.
51. K. P. D. Lagerlof, A. H. Heuer, J. Castaing, J. P. Riviere and T. E. Mitchell, Slip and Twinning in Sapphire (a-Al2O3). J. Am. Ceram. Soc., 1994. 77(2): p. 385-97.
52. L.B. Bilde-Sqrensen, B. F. Lawlor, T. Geipel, P. Pirouz, A. H. Heuer and K. P. D. Lagerlof, On Basal Slip and Basal Twinning in Sapphire-I. Basal Slip Revisited. Acta Mater., 1996. 44(5): p. 2145-52.
53. P. Pirouz, B. F. Lawlor, T. Geipel, L.B. Bilde-Sqrensen, A. H. Heuer and K. P. D. Lagerlof, On Basal Slip and Basal Twinning in Sapphire-II. A New Model of Basal Twinning. Acta Mater., 1996. 44(5): p. 2153-64.
54. T. Geipel, L.B. Bilde-Sqrensen, B. F. Lawlor, P. Pirouz, K. P. D. Lagerlof and A. H. Heuer, On Basal Slip and Basal Twinning in Sapphire-III. HRTEM of the Twin/Matrix Interface. Acta Mater., 1996. 44(5): p. 2165-74.
55. S. J. Chen and D. G. Howitt, A Mechanism to Describe the Basal Twinning of Sapphire. Acta Metall. Mater., 1992. 40(2): p. 3249-53.
56. A. H. Heuer, Deformation Twinning in Corundum. Philo. Mag., 1966. 13: p. 379-93.
57. P. R. Kenway, Calculated Stacking-Fault Energies in a-Al2O3. Philo. Mag. B, 1993. 68(2): p. 171-83.
58. A. G. Marinopoulos and C. Elsasser, Density-Functional and Shell-Model Calculations of the Energetics of Basal-Plane Stacking Faults in Sapphire. Philo. Mag. Let., 2001. 81(5): p. 329-38.
59. A. Nakamura, T. Yamamoto and Y. Ikuhara, Direc Observation of Basal Dislocation in Sapphire by HRTEM. Acta Mater., 2002. 50: p. 101-08.
60. C. Zener see C. S. Smith, Grains, Phases, and Interactions: An Interpretation of Microstructure. A. I. M. E., 1948. 175: p. 15-51.
61. M. F. Ashby, J. Harper and J. Lewis, The Interaction of Crystal Boundaries with Second-Phase Particles. Trans. Metall. Soc., 1969. 245(2): p. 413-20.
62. K. Okada and T. Sakuma, The Role of Zener's Pinning Effect on the Grain Growth in Al2O3-ZrO2. J. Ceram. Soc. Jpn., 1992. 100: p. 392-95.
63. C. J. Tweed, B. Ralph and N. Hansen, The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth. Acta Metall., 1984. 32(9): p. 1407-14.
64. W. E. Lee and K. P. D. Lagerlof, Structural and Electron Diffraction Data for Sapphire (a-Al2O3). J. Elec. Micros. Tech., 1985. 2: p. 247-58.
.
65. J. Fang, M. P. Harmer, H. M. Chan, Evaluation of Subgrain Formation in Al2O3-SiC Nanocomposites. J. Mater. Sci., 1997. 32: p. 3427-33.
66. J. Fang, H. M. Chan and M. P. Harmer, Residual Stress Relaxation Behavior in Al2O3-SiC Nanocomposites. Mater. Sci. Engin. A, 1995. 195: p. 163-67.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.2.184
論文開放下載的時間是 校外不公開

Your IP address is 3.145.2.184
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code