Responsive image
博碩士論文 etd-0711103-155637 詳細資訊
Title page for etd-0711103-155637
論文名稱
Title
自發性高血壓大鼠在孤立束核神經元中胰島素分子訊息傳遞缺陷之研究
Determinations of Insulin Signaling Defects in the NTS Neurons of Spontaneously Hypertensive Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-16
繳交日期
Date of Submission
2003-07-11
關鍵字
Keywords
自發性高血壓大鼠、孤立束核、胰島素分子
spontaneously hypertensive rats, Insulin, nucleus tractus solitarii
統計
Statistics
本論文已被瀏覽 5659 次,被下載 3229
The thesis/dissertation has been browsed 5659 times, has been downloaded 3229 times.
中文摘要
胰島素抗性(insulin resistance)在心臟血管疾病的發展中佔有錯綜複雜的角色。胰島素抗性症狀包含高血壓、糖尿病以及肥胖等病因,然而導致高血壓以及胰島素抗性症狀之間的作用機轉並不清楚。胰島素(insulin)在不同型態的細胞中扮演著多種生物功能。由臨床研究中指出,在神經細胞中,胰島素能經由PI3K的活化刺激產生蛋白激酉每Akt。此外,在人類臍靜脈內皮細胞中,經由胰島素刺激所產生的一氧化氮能被PI3K抑制劑wortmannin所抑制。另外,我們也曾經報導在中樞神經系統中,NO能協助調控血壓。本研究主要的目的為探討高血壓以及胰島素抗性症狀之間的作用機轉以及在大鼠孤立束核神經元中,胰島素訊息傳遞分子參與心臟血管調控的作用,我們研究觀察insulin在urethane麻醉的雄性自發性高血壓以及Wistar-kyoto大鼠的孤立束核神經元中,其血壓及心跳的變化作用。在8週以及16週WKY大鼠中,單邊微量注射insulin (100 IU/ml)到孤立束核會產生降血壓與心跳速率的作用。然而,在16週SHR大鼠中,insulin並沒有引起明顯的心臟血管反應。此外,微量注射insulin到8週的SHR (正常血壓)大鼠中,也會產生相似降血壓與心跳速率的作用。在WKY以及8週SHR大鼠中,insulin的這些心臟血管作用會被前處理PI3K的抑制劑LY294002以及一氧化氮合成酉每的抑制劑L-NAME所減弱;相對的,在16週SHR大鼠中,則沒有明顯的抑制作用。此外,insulin在WKY以及SHR大鼠的孤立束核中能引起蛋白激酉每Akt的磷酸化。因此,這些結果顯示insulin-PI3K-Akt-NOS作用機轉參與心臟血管反應在WKY以及8週SHR大鼠(正常血壓)中,但在16週高血壓SHR大鼠,似乎沒有參與其血壓與心跳的調控。實驗結果也推測出在16週自發性高血壓大鼠中,胰島素分子訊息傳遞之缺失也許是導致高血壓的原因之一。
Abstract
Insulin resistance plays an intricate role in the development of cardiovascular diseases, hypertension is associated with insulin-resistant states such as diabetes and obesity. However, the underlying mechanism to explain the associations between hypertension and insulin resistance is unknown. The insulin exerts various biological effects in different type of cells. Clinical studies have reported that insulin has been shown to stimulate the protein kinase Akt via activation of PI3K in endothelial cells. Furthermore, insulin stimulated production of nitric oxide (NO) is inhibited by wortmannin in human umbilical vein endothelial cells (HUVECs). We also reported previously that NO contributes to the regulation of blood pressure in central nervous system. The aim of this study was to elucidate the potential mechanisms linking hypertension with insulin resistance and whether insulin signaling may involved in cardiovascular regulation in rat NTS neurons, we investigated the cardiovascular effects of insulin in the nucleus tractus solitarii (NTS) of urethane-anesthetized male spontaneous hypertensive rat (SHR) and normotensive Wistar-kyoto rats (WKY). Unilateral microinjection of insulin (100 IU/ml) into the NTS produced prominent depressor and bradycardic effects in 8/16 week-old WKY. However, no significant cardiovascular effects were found in adult SHR (16 week-old) after insulin injection. Furthermore, young SHR (8 week-old) with normal blood pressure showed depressor and bradycardic effects after insulin injection. Pretreatment with PI3K inhibitor LY294002 and NO synthase inhibitor L-NAME into the NTS attenuated the cardiovascular response evoked by insulin in WKY and young SHR but not in adult SHR. Furthermore, insulin induced Akt phosphorylation in-situ in WKY and SHR rats. Thus, these results indicated that insulin-PI3K-Akt-NOS sensitive mechanisms were involved in WKY and young SHR (normotensive) but not in adult SHR (hypertensive). The results also suggested the possible defective insulin signaling may resulted in the development of hypertension in adult SHR.
目次 Table of Contents
Index
Pages
Abbreviations...........................I
Abstract in Chinese..... ...............III
Abstract in English.....................V
Contents................................VII

Contents

Chapter 1 General Introduction............................1
1.1 Backgrounds and Significance.......2
1.2 Specific Aims......................11
1.3 References.........................12

Chapter 2 The Cardiovascular Effects of Insulin
in the Nucleus Tractus Solitarii of
Wistar-kyoto Rats............18
2.1 Summary............................19
2.2 Introduction.......................21
2.3 Materials and Methods..............28
2.4 Results............................33
2.5 Discussion.........................36
2.6 References.........................42
2.7 Figures and Figure Legends.........48

Chapter 3 Determinations of Insulin Signaling
in the NTS Neurons of Spontaneously
Hypertensive Rats............63
3.1 Summary............................64
3.2 Introduction.......................65
3.3 Materials and Methods..............69
3.4 Results............................74
3.5 Discussion.........................77
3.6 References.........................82
3.7 Figures and Figure Legends.........86

Chapter 4 Future Perspectives..........98
4.1 References.........................105
4.2 Figure and Legends.................106

Appendix................................108
A-1 Preliminary Results................109
A-2 Experimental Design and Methods....117
參考文獻 References
Alessi, D. R., and Downes, C. P. (1998). The role of PI 3-kinase in insulin action. Biochim Biophys Acta 1436, 151-164.

Bredt, D. S., and Snyder, S. H. (1992). Nitric oxide, a novel neuronal messenger. Neuron 8, 3-11.

Chan, R. K., and Sawchenko, P. E. (1998). Organization and transmitter specificity of medullary neurons activated by sustained hypertension: implications for understanding baroreceptor reflex circuitry. J Neurosci 18, 371-387.

Cong, L. N., Chen, H., Li, Y., Zhou, L., McGibbon, M. A., Taylor, S. I., and Quon, M. J. (1997). Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol Endocrinol 11, 1881-1890.

Dudek, H., Datta, S. R., Franke, T. F., Birnbaum, M. J., Yao, R., Cooper, G. M., Segal, R. A., Kaplan, D. R., and Greenberg, M. E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661-665.

Edwards, J. G., and Tipton, C. M. (1989). Influences of exogenous insulin on arterial blood pressure measurements of the rat. J Appl Physiol 67, 2335-2342.

Esteves, F. O., McWilliam, P. N., and Batten, T. F. (2000). Nitric oxide producing neurones in the rat medulla oblongata that project to nucleus tractus solitarii. J Chem Neuroanat 20, 185-197.

Forte, P., Copland, M., Smith, L. M., Milne, E., Sutherland, J., and Benjamin, N. (1997). Basal nitric oxide synthesis in essential hypertension. Lancet 349, 837-842.

Gallis, B., Corthals, G. L., Goodlett, D. R., Ueba, H., Kim, F., Presnell, S. R., Figeys, D., Harrison, D. G., Berk, B. C., Aebersold, R., and Corson, M. A. (1999). Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 274, 30101-30108.

Gardiner, S. M., Compton, A. M., Bennett, T., Palmer, R. M., and Moncada, S. (1990). Control of regional blood flow by endothelium-derived nitric oxide. Hypertension 15, 486-492.

Griffith, T. M., Edwards, D. H., Davies, R. L., Harrison, T. J., and Evans, K. T. (1987). EDRF coordinates the behaviour of vascular resistance vessels. Nature 329, 442-445.

Havrankova, J., Roth, J., and Brownstein, M. (1978a). Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272, 827-829.

Havrankova, J., Schmechel, D., Roth, J., and Brownstein, M. (1978b). Identification of insulin in rat brain. Proc Natl Acad Sci U S A 75, 5737-5741.

Hermann, C., Assmus, B., Urbich, C., Zeiher, A. M., and Dimmeler, S. (2000). Insulin-mediated stimulation of protein kinase Akt: A potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 20, 402-409.

Huang, P. L., Huang, Z., Mashimo, H., Bloch, K. D., Moskowitz, M. A., Bevan, J. A., and Fishman, M. C. (1995). Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239-242.

Ignarro, L. J., Byrns, R. E., Buga, G. M., and Wood, K. S. (1987). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61, 866-879.

Kim, F., Gallis, B., and Corson, M. A. (2001). TNF-alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am J Physiol Cell Physiol 280, C1057-1065.
Kishi, T., Hirooka, Y., Ito, K., Sakai, K., Shimokawa, H., and Takeshita, A. (2002). Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 39, 264-268.

Kishi, T., Hirooka, Y., Kimura, Y., Sakai, K., Ito, K., Shimokawa, H., and Takeshita, A. (2003). Overexpression of eNOS in RVLM improves impaired baroreflex control of heart rate in SHRSP. Rostral ventrolateral medulla. Stroke-prone spontaneously hypertensive rats. Hypertension 41, 255-260.

Kozma, S. C., and Thomas, G. (2002). Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays 24, 65-71.

Lawrence, A. J., Castillo-Melendez, M., McLean, K. J., and Jarrott, B. (1998). The distribution of nitric oxide synthase-, adenosine deaminase- and neuropeptide Y-immunoreactivity through the entire rat nucleus tractus solitarius: Effect of unilateral nodose ganglionectomy. J Chem Neuroanat 15, 27-40.

Liang, C., Doherty, J. U., Faillace, R., Maekawa, K., Arnold, S., Gavras, H., and Hood, W. B., Jr. (1982). Insulin infusion in conscious dogs. Effects on systemic and coronary hemodynamics, regional blood flows, and plasma catecholamines. J Clin Invest 69, 1321-1336.

Lin, H.-C., Wan, F.-J., Kang, B.-H., Wu, C.-C., and Tseng, C.-J. (1999). Systemic Administration of Lipopolysaccharide Induces Release of Nitric Oxide and Glutamate and c-fos Expression in the Nucleus Tractus Solitarii of Rats. Hypertension 33, 1218-1224.

Lo, W. C., Jan, C. R., Wu, S. N., and Tseng, C. J. (1998). Cardiovascular effects of nitric oxide and adenosine in the nucleus tractus solitarii of rats. Hypertension 32, 1034-1038.

Lo, W. C., Lin, H. C., Ger, L. P., Tung, C. S., and Tseng, C. J. (1997). Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats. Hypertension 30, 1499-1503.
Lo, W. C., Lin, H. J., Wang, K., Lee, F. Y., Perng, C. L., Lin, H. C., and Lee, S. D. (1996). Gastric secretion in Chinese patients with cirrhosis. J Clin Gastroenterol 23, 256-260.

Millatt, L. J., Abdel-Rahman, E. M., and Siragy, H. M. (1999). Angiotensin II and nitric oxide: a question of balance. Regul Pept 81, 1-10.

Moncada, S., Palmer, R. M., and Higgs, E. A. (1991). Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109-142.

Nystrom, F. H., and Quon, M. J. (1999). Insulin signalling: metabolic pathways and mechanisms for specificity. Cell Signal 11, 563-574.

Ohta, A., Takagi, H., Matsui, T., Hamai, Y., Iida, S., and Esumi, H. (1993). Localization of nitric oxide synthase-immunoreactive neurons in the solitary nucleus and ventrolateral medulla oblongata of the rat: their relation to catecholaminergic neurons. Neurosci Lett 158, 33-35.

Palmer, R. M., Ashton, D. S., and Moncada, S. (1988). Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664-666.

Palmer, R. M., Ferrige, A. G., and Moncada, S. (1987). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526.

Paton, J. F., Deuchars, J., Ahmad, Z., Wong, L. F., Murphy, D., and Kasparov, S. (2001). Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 531, 445-458.

Paxinos, G., and Watson, C. (1986). The rat brain in stereotaxic corrdinates, 2nd ed, Academic Press, New York).

Quon, M. J., Chen, H., Ing, B. L., Liu, M. L., Zarnowski, M. J., Yonezawa, K., Kasuga, M., Cushman, S. W., and Taylor, S. I. (1995). Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol 15, 5403-5411.

Rees, D. D., Palmer, R. M., and Moncada, S. (1989). Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86, 3375-3378.

Reis, D. J. (1984). The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation 70, III31-45.

Ruggiero, D. A., Mtui, E. P., Otake, K., and Anwar, M. (1996). Central and primary visceral afferents to nucleus tractus solitarii may generate nitric oxide as a membrane-permeant neuronal messenger. J Comp Neurol 364, 51-67.

Sakai, K., Hirooka, Y., Matsuo, I., Eshima, K., Shigematsu, H., Shimokawa, H., and Takeshita, A. (2000). Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36, 1023-1028.

Saltiel, A. R., and Pessin, J. E. (2002). Insulin signaling pathways in time and space. Trends Cell Biol 12, 65-71.

Scherrer, U., Randin, D., Vollenweider, P., Vollenweider, L., and Nicod, P. (1994). Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest 94, 2511-2515.

Schulingkamp, R. J., Pagano, T. C., Hung, D., and Raffa, R. B. (2000). Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev 24, 855-872.

Steinberg, H. O., Brechtel, G., Johnson, A., Fineberg, N., and Baron, A. D. (1994). Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94, 1172-1179.

Tseng, C. J., Liu, H. Y., Lin, H. C., Ger, L. P., Tung, C. S., and Yen, M. H. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 27, 36-42.

Vallance, P., Collier, J., and Moncada, S. (1989). Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2, 997-1000.

Vincent, S. R., and Kimura, H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755-784.

Werther, G. A., Hogg, A., Oldfield, B. J., McKinley, M. J., Figdor, R., Allen, A. M., and Mendelsohn, F. A. (1987). Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 121, 1562-1570.

Ye, S., Mozayeni, P., Gamburd, M., Zhong, H., and Campese, V. M. (2000). Interleukin-1beta and neurogenic control of blood pressure in normal rats and rats with chronic renal failure. Am J Physiol Heart Circ Physiol 279, H2786-2796.

Zeng, G., Nystrom, F. H., Ravichandran, L. V., Cong, L. N., Kirby, M., Mostowski, H., and Quon, M. J. (2000). Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101, 1539-1545.

Zeng, G., and Quon, M. J. (1996). Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98, 894-898.

Abe, H., Yamada, N., Kamata, K., Kuwaki, T., Shimada, M., Osuga, J., Shionoiri, F., Yahagi, N., Kadowaki, T., Tamemoto, H., et al. (1998). Hypertension, hypertriglyceridemia, and impaired endothelium-dependent vascular relaxation in mice lacking insulin receptor substrate-1. J Clin Invest 101, 1784-1788.

Aitman, T. J., Gotoda, T., Evans, A. L., Imrie, H., Heath, K. E., Trembling, P. M., Truman, H., Wallace, C. A., Rahman, A., Dore, C., et al. (1997). Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 16, 197-201.

Akazawa, S., Sun, F., Ito, M., Kawasaki, E., and Eguchi, K. (2000). Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabetes Care 23, 1067-1071.

Colombari, E., Sato, M. A., Cravo, S. L., Bergamaschi, C. T., Campos, R. R., Jr., and Lopes, O. U. (2001). Role of the medulla oblongata in hypertension. Hypertension 38, 549-554.

Cusi, K., Maezono, K., Osman, A., Pendergrass, M., Patti, M. E., Pratipanawatr, T., DeFronzo, R. A., Kahn, C. R., and Mandarino, L. J. (2000). Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 105, 311-320.

Despres, J. P., Lamarche, B., Mauriege, P., Cantin, B., Dagenais, G. R., Moorjani, S., and Lupien, P. J. (1996). Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 334, 952-957.

Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A. M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605.

Duplain, H., Burcelin, R., Sartori, C., Cook, S., Egli, M., Lepori, M., Vollenweider, P., Pedrazzini, T., Nicod, P., Thorens, B., and Scherrer, U. (2001). Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104, 342-345.

Folli, F., Kahn, C. R., Hansen, H., Bouchie, J. L., and Feener, E. P. (1997). Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 100, 2158-2169.

Folli, F., Saad, M. J., Backer, J. M., and Kahn, C. R. (1993). Regulation of phosphatidylinositol 3-kinase activity in liver and muscle of animal models of insulin-resistant and insulin-deficient diabetes mellitus. J Clin Invest 92, 1787-1794.

Fulton, D., Gratton, J. P., McCabe, T. J., Fontana, J., Fujio, Y., Walsh, K., Franke, T. F., Papapetropoulos, A., and Sessa, W. C. (1999). Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601.

Hingorani, A. D., Liang, C. F., Fatibene, J., Lyon, A., Monteith, S., Parsons, A., Haydock, S., Hopper, R. V., Stephens, N. G., O'Shaughnessy, K. M., and Brown, M. J. (1999). A common variant of the endothelial nitric oxide synthase (Glu298-->Asp) is a major risk factor for coronary artery disease in the UK. Circulation 100, 1515-1520.

Howard, G., O'Leary, D. H., Zaccaro, D., Haffner, S., Rewers, M., Hamman, R., Selby, J. V., Saad, M. F., Savage, P., and Bergman, R. (1996). Insulin sensitivity and atherosclerosis. The Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Circulation 93, 1809-1817.

Kahn, C. R., Lauris, V., Fehlmann, M., and Crettaz, M. (1983). Expression of insulin receptors and insulin action in cell hybrids and cybrids. Biochem J 214, 309-316.

Kelly, I. E., Han, T. S., Walsh, K., and Lean, M. E. (1999). Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 22, 288-293.

Kuboki, K., Jiang, Z. Y., Takahara, N., Ha, S. W., Igarashi, M., Yamauchi, T., Feener, E. P., Herbert, T. P., Rhodes, C. J., and King, G. L. (2000). Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo : a specific vascular action of insulin. Circulation 101, 676-681.

Kwok, J. B., Kapoor, R., Gotoda, T., Iwamoto, Y., Iizuka, Y., Yamada, N., Isaacs, K. E., Kushwaha, V. V., Church, W. B., Schofield, P. R., and Kapoor, V. (2002). A missense mutation in kynurenine aminotransferase-1 in spontaneously hypertensive rats. J Biol Chem 277, 35779-35782.

Lo, W. C., Lin, H. C., Ger, L. P., Tung, C. S., and Tseng, C. J. (1997). Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats. Hypertension 30, 1499-1503.

Lucas, C. P., Estigarribia, J. A., Darga, L. L., and Reaven, G. M. (1985). Insulin and blood pressure in obesity. Hypertension 7, 702-706.

Obata, T., Kashiwagi, A., Maegawa, H., Nishio, Y., Ugi, S., Hidaka, H., and Kikkawa, R. (1996). Insulin signaling and its regulation of system A amino acid uptake in cultured rat vascular smooth muscle cells. Circ Res 79, 1167-1176.

Ogihara, T., Asano, T., Ando, K., Chiba, Y., Sakoda, H., Anai, M., Shojima, N., Ono, H., Onishi, Y., Fujishiro, M., et al. (2002). Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40, 872-879.

Olefsky, J. M., and Nolan, J. J. (1995). Insulin resistance and non-insulin-dependent diabetes mellitus: cellular and molecular mechanisms. Am J Clin Nutr 61, 980S-986S.

Reaven, G. M., Brand, R. J., Chen, Y. D., Mathur, A. K., and Goldfine, I. (1993). Insulin resistance and insulin secretion are determinants of oral glucose tolerance in normal individuals. Diabetes 42, 1324-1332.

Richey, J. M., Ader, M., Moore, D., and Bergman, R. N. (1999). Angiotensin II induces insulin resistance independent of changes in interstitial insulin. Am J Physiol 277, E920-926.

Scherrer, U., Randin, D., Vollenweider, P., Vollenweider, L., and Nicod, P. (1994). Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest 94, 2511-2515.

Scherrer, U., and Sartori, C. (1997). Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 96, 4104-4113.

Scherrer, U., and Sartori, C. (2000). Defective nitric oxide synthesis: a link between metabolic insulin resistance, sympathetic overactivity and cardiovascular morbidity. Eur J Endocrinol 142, 315-323.

Shankar, R. R., Wu, Y., Shen, H. Q., Zhu, J. S., and Baron, A. D. (2000). Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes 49, 684-687.

Tamaroglio, T. A., and Lo, C. S. (1994). Regulation of fibronectin by insulin-like growth factor-I in cultured rat thoracic aortic smooth muscle cells and glomerular mesangial cells. Exp Cell Res 215, 338-346.

Tseng, C. J., Liu, H. Y., Lin, H. C., Ger, L. P., Tung, C. S., and Yen, M. H. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 27, 36-42.

Velloso, L. A., Folli, F., Sun, X. J., White, M. F., Saad, M. J., and Kahn, C. R. (1996). Cross-talk between the insulin and angiotensin signaling systems. Proc Natl Acad Sci U S A 93, 12490-12495.

White, M. F. (1994). The IRS-1 signaling system. Curr Opin Genet Dev 4, 47-54.

White, M. F., and Kahn, C. R. (1994). The insulin signaling system. J Biol Chem 269, 1-4.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code