Responsive image
博碩士論文 etd-0711105-135620 詳細資訊
Title page for etd-0711105-135620
論文名稱
Title
熔化或銲接過程中馬里哥尼流的尺寸因次分析
Scaling Marangoni Flow in Melting or Welding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-28
繳交日期
Date of Submission
2005-07-11
關鍵字
Keywords
熔化、馬里哥尼流、尺寸因次分析、焊接
Scale, Melt, Weld, Marangoni Flow
統計
Statistics
本論文已被瀏覽 5745 次,被下載 1836
The thesis/dissertation has been browsed 5745 times, has been downloaded 1836 times.
中文摘要
本研究利用尺寸因次分析預測在低功率電子束或雷射焊接過程中受馬里哥尼(熱毛細)流影響的熔區形狀。本研究因使用雷射或電子束當作入射能量,所以熔池中沒有洞之產生,也不包含電磁力量。因馬里哥尼數和雷諾數有104之多,所以可以採用尺寸因次分析技巧以估算不同區熱邊界層和黏滯層。本研究使用電腦計算出的結果發現熔池形狀、熔池表面流體速度和熔池表面溫度分佈可由馬里哥尼數、Prandtl數、入射能量、Peclet數、Biot數以及固體到液體的熱傳導率來決定。本研究不但對於機械加工方面有莫大幫助,並且凡關於低能量熔化的過程都能使用本研究的結果去預測熔池形狀、表面流體速度及表面溫度分佈⋯等。
Abstract
In this study, shapes of the molten region and transport processes affected by thermocapillary convection in melting or welding pool irradiated by a low-power-density beam are determined from a scale analysis. A low-power-density-beam heating implies no deep and narrow cavity or keyhole taking place in the pool. In this work, the complicated flow pattern in the pool is influenced by an unknown shape of solid-liquid interface, and interactions between the free surface layer, corner regions, and boundary layer with phase transition on the solid-liquid interface. Since Prandtl number is much less than unity while Marangoni and Reynolds number can be more than in melting metals, an appropriate scaling mass, momentum, and energy transport subject to a force balance between viscous stress and surface tension gradient on the free surface account for distinct thermal and viscous boundary layers in these regions of different length, velocity, and temperature scales. The results find that shapes of the fusion zone, free surface velocity and temperature profiles are determined by Marangoni, 104
i
Prandtl, beam power, Peclet, and Biot numbers, and solid-to-liquid thermal conductivity ratio. The predications agree with numerical computations.
目次 Table of Contents
目錄 英文摘要 i 中文摘要 iii 圖目錄 iv 表目錄 v 符號說明 vi 第一章 緒論 1 1-1 相關文獻回顧 1 1-2 研究動機及目的 4 第二章 系統模型 5 2-1 理論分析 5 2-1.1 尺寸因次分析 7 2-2 模擬方式 13 第三章 結果與討論 15 3-1 模擬結果 15 3-2 不同表面張力係數模擬結果之比較 22
第四章 結論 25 附錄一 26 附錄二 37 參考文獻 41
參考文獻 References
參考文獻 [1] Wei, P.S. ,Wang, S. C. and Lin, M.S."Transport Phenomena During Resistance Spot-Welding",JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1996, Vol 118, Iss 3, pp 762-773 [2] Rosenthal, D., 1941, "Mathematical Theory of Heat Distribution during Welding and Cutting," Welding J., Vol.20, pp.220-s to 234-s. [3] Christensen, N., Davies, V. de L., and Gjermundsen, K., 1965, "Distribution of Temperatures in Arc Welding," British Welding Journal, Vol.12, pp.54-75. [4] Carslaw, H. C. and Jaeger, J. C., 1959, Conduction of Heat in Solids, Clarendon Press., Oxford, Chapter 10. [5] Cline, H. E., and Anthony, T. R., 1977,"Heat Treating and Melting Material with a Scanning Laser or Electron Beam," J. Applied Physics, Vol.48, pp.3895-3900. [6] Eagar, T. W., and Tsai, N.-S., 1983, "Temperature Fields Produced by Traveling Distributed Heat Sources, " Welding J., Vol.62, pp.346-s to 355-s.
41
[7] Elmer, J. W., Giedt, W. H., and Eagar, T. W., 1990,"The Transition from Shallow to Deep Penetration during Electron Beam Welding," Welding J., Vol.69, pp.167-s-176-s. [8] Miyazaki, T., Kimura, T., and Giedt, W. H., 1991,"Temperature Distribution around a Sphere Moving Through an Infinite Solid and Its Application to Plasma Arc Surface Treatment," ASME/JSME Thermal Engineering Proceedings, Vol. 1, pp.365-372. [9] Postacioglu, N., Kapadia, P., and Dowden, J., 1993,"A Mathematical Model of Heat Conduction in a Prolate Spheroidal Coordinate System with Applications to the Theory of Welding," J. Physics D: Applied Physics, Vol.26, pp.563-573. [10] Heiple, C. R., and Roper, J. R., 1982,"Mechanism for Minor Element Effect on GTA Fusion Zone Geometry," Welding J., Vol.61, pp.97-s-102-s. [11] Kou, S., and Wang, Y. H., 1986,"Weld Pool Convection and Its Effect," Welding J., Vol.65, pp.63-s-70-s. [12] Zacharia, T., David, S. A., Vitek, J. M., and DebRoy, T., 1989, "Weld Pool Development during GTA and Laser Beam Welding
42
of Type 304 Stainless Steel, Part I-Theoretical Analysis," Welding J., Vol.68, pp.499-s to 509-s. [13] Zebib, A., Homsy, G. M., and Meiburg, E., 1985,"High Marangoni Number Convection in a Square Cavity," Physics of Fluids, Vol.28, pp.3467-3476. [14] Bejan, A., 1984, Convection Heat Transfer, Wiley, New York, Chapter 2. [15] Ostrach, S., 1982,"Low-Gravity Fluid Flows," Annual Reviews of Fluid Mechanics, Vol.14, pp.313-345. [16] Rivas, D., and Ostrach, S., 1992,"Scaling of Low-Prandtl-number Thermocapillary Flows," International Journal of Heat and Mass Transfer, Vol.35, pp.1469-1479. [17] Chung, F. K., and Wei, P. S., 1999, "Mass, Momentum, and Energy Transport in a Molten Pool When Welding Dissimilar Metals, " J. Heat Transfer, Vol. 121, pp. 451-461. [18] Wei, P. S., and Chung, F. K., 2000, "Unsteady Marangoni Flow in a Molten Pool When Welding Dissimilar Metals," Metallurgical and Materials Transactions B, Vol. 31B, pp. 1387- 1403.
43
[19] Sen, A. K., and Davis, S. H., 1982,"Steady Thermocapillary Flows in Two-Dimensional Slots," J. Fluid Mechanics, Vol.121, pp.163-186. [20] Wei, P.S. and Chiou, L.R. ,1988,"Molten-Metal Flow Around the Base of a Cavity During a High-Energy Beam Penetrating Process",JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME 1988, Vol 110, Iss 4A, pp. 918-923 [21] Chen, M. M., 1987, "Thermocapillary Convection in Materials Processing," in Interdisciplinary Issues in Materials Processing and Manufacturing, edited by S. K. Samanta, R. Komanduri, R. McMeeking, M. M. Chen, and A. Tseng, ASME, New York, pp. 541-558. [22] K. Mundra, T. Debroy, T. Zacharia and S. A. David, 1992,"Role of thermophysical properties in weld pool modeling", Welding J.,1992, pp.313-320 [23] K. Mundra and T. Debroy, 1993,"Toward understanding alloying element vaporization during laser beam welding of stainless steel", Welding J., 1993, pp1-9 [24] W. Pitscheneder, T. Debroy, K. Mundra and R. Ebner,
44
1996,"Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels", Welding J.,1996,pp.71-80 [25] Tatsuya Hashimoto, Fukuhisa Matsuda and Haruyoshi Suzuki, 1965,"Some experiments on electron-beam welds",1965, TRANSACTIONS OF NATIONAL RESEARCH INSTITUTE METALS ,1965, Vol.7, NO.4 pp144-151 [26] Tatsuya Hashimoto, Fukuhisa Matsuda, 1965,"Effect of welding variables and materials upon bead shape in electron-beam welding",TRANSACTIONS OF NATIONAL RESEARCH INSTITUTE METALS ,1965, Vol.77, NO.3 pp.96-108 [27]異種金屬焊接之傳輸現象,鍾豐洸,1988
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code