Responsive image
博碩士論文 etd-0711105-161914 詳細資訊
Title page for etd-0711105-161914
論文名稱
Title
在切割晶格模型上之蛋白質結構預測
Protein Structure Prediction Based on the Sliced Lattice Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-29
繳交日期
Date of Submission
2005-07-11
關鍵字
Keywords
切割晶格、摺疊、預測、螞蟻系統、蛋白質結構
Sliced lattice, Protein structure, Folding, Ant colony system, Prediction
統計
Statistics
本論文已被瀏覽 5703 次,被下載 1835
The thesis/dissertation has been browsed 5703 times, has been downloaded 1835 times.
中文摘要
蛋白質在生物體內的功能性表現取決於其三級結構。在過去數十年中,大量的研究投入在蛋白質的相關領域。然而,蛋白質的摺疊問題仍未能被解決,這個問題的挑戰便在於如何透過蛋白質的一級序列資訊來預測一蛋白質的三級結構的三維座標。在本論文中,我們提出一個綜合性的方法,結合了同源模擬法與折疊辨識法,在得知蛋白質一級序列的資訊下,來預測蛋白質的三維座標。在過去的研究中,蛋白質的摺疊問題常透過親疏水性模型來進行模擬,但並未能表現出實際上蛋白質的結構。我們提出一個更精密的切割晶格模型來模擬蛋白質的結構,而除了親疏水性的特性外,我們更加入了在親疏水性模型中所被忽略的雙硫鍵鍵結因素。整個蛋白質的摺疊問題,在我們的方法中,是透過螞蟻系統來進行模擬。根據我的實驗所得到的結果,在透過與真實結構比較的RMSD值來看,我們的方法的確提供了較準確的預測結果。
Abstract
Functional expression of a protein in life form is decided by its tertiary structure. In the past few decades, a significant number of studies have been made on this subject. However, the folding rules of a protein still stay unsolved. The challenge is to predict the three-dimensional tertiary structure of a protein from its primary amino acid sequence. We propose a hybrid method combining homology model and the folding approach to predict protein three-dimensional structure from amino acid sequence. The previous researches on folding problem mostly take the HP (Hydrophobic-Polar) model, which is not able to simulate the native structure of proteins. We use a more exquisite model, the sliced lattice model, to approximate the native forms. Another essential factor influencing protein structures is disulfide bonds, which are ignored in the HP model. We use the ant colony optimization algorithm to approximate the folding problem with the constrained disulfide bond on the sliced lattice HP model. We show that the prediction results are better than previous methods by the measurement of RMSD(Root Mean Square Deviation).
目次 Table of Contents
TABLE OF CONTENTS
Page
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Properties of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Amino Acids in Proteins . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Levels of protein structures . . . . . . . . . . . . . . . . . . . 6
2.1.3 E®ective Factors in Protein Structures . . . . . . . . . . . . . 10
2.2 Conformational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Structure Prediction Methods . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 The Folding Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 The Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . 24
2.6.1 The Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 The Ant Colony Optimization Algorithm for the Folding Prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 The Previous Prediction Method Based on Curve Alignment . . . . . 31
Chapter 3. Our Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 4. Experimental Results . . . . . . . . . . . . . . . . . . . . . . 63
Page
Chapter 5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
參考文獻 References
[1] R. Agarwala, S. Batzoglou, and V. Dancik, "Local rules for protein folding on
a triangular lattice and generalized hydrophobicity in the HP model," Journal
of Computational Biology, Vol. 4, No. 3, pp. 275-296, 1997.
[2] S. F. Altschul, "Amino acid substitution matrices from an information theoretic
perspective.," Journal of Molecular Biology, Vol. 219, pp. 555-565, 1991.
[3] S. F. Altschul, "A protein alignment scoring system sensitive at all evolutionary
distances.," Journal of Molecular Evolution, Vol. 36, pp. 290-300, 1993.
[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, "Basic local
alignment search tool.," Journal of Molecular Biology, Vol. 215, pp. 403-410,
1990.
[5] C. B. Anfinsen, "Principles that govern the folding of protein chains.," Science,
Vol. 181, pp. 223-230, 1973.
[6] A. Bairoch and R. Apweiler, "The swiss-port protein sequence database and its
supplement trembl in 2000," Nucleic Acids Research, Vol. 28, pp. 45-48, 2000.
[7] B. Berger and T. Leight, "Protein folding in the hydrophobic-hydrophilic (HP)
model is NP-complete," Journal of Computational Biology, Vol. 5, No. 1,
pp. 27-40, 1998.
[8] S. F. Betz, "Disulfide bonds and the stability of globular proteins.," Protein
Science, Vol. 2, pp. 1551-1558, 1993.
[9] Y. Y. Chen, C. B. Yang, and K. T. Tseng, "Prediction of protein structures
based on curve alignment," Proceedings of the 20th Workshop on Combinatorial
Mathematics and Computation Theory, Chiayi, Taiwan, pp. 34-44, 2003.
[10] P. Y. Chou and G. D. Fasman, "Conformational parameters for amino acids
in helical, belta-sheet, and random coil regions calculated from proteins.," Bio-
chemistry, Vol. 13, pp. 211-222, 1974.
[11] P. Y. Chou and G. D. Fasman, "Prediction of protein conformation.," Biochem-
istry, Vol. 13, pp. 222-245, 1974.
[12] C. H. Chu, J. Gu, X. D. Hou, and Q. Gu, "A heuristic ant algorithm for
solving QoS multicast routing problem," Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, pp. 1630-1635, 2002.
[13] C. C. Chuang, C. Y. Chen, J. M. Yang, P. C. Lyu, and J. K. Hwang, "Relation-
ship between protein structures and disulfide-bonding patterns.," PROTEINS:
Structure, Function, and Bioinformatics, Vol. 53, pp. 1-5, 2003.
[14] T. Dansdekar and P. Argos, "Folding the main-chain of small proteins with the
genetic algorithm," Journal of Molecular Biology, Vol. 236, No. 3, pp. 844-861,
1994.
[15] L. Davis, Genetic Algorithms and Simulated Annealing. Morgan Kaufmann
Publishers Inc., 1987.
[16] K. A. Dill, "Theory for the folding and stability of globular proteins," Biochemistry, Vol. 24, pp. 1501-1509, 1985.
[17] R. F. Doolittle, Of URFs and ORFs. University Science Books, 1987.
[18] M. Dorigo and L. M. Gambardella, "Ant colony system: A cooperative learning
approach to the traveling salesman problem," IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, pp. 53-66, 1997.
[19] M. Dorigo, V. Maniezzo, and A. Colorni, "The ant system: Optimization by
a colony of cooperating agents," IEEE Transactions on Systems, Man, and
Cybernetics - Part B, Vol. 26, No. 1, pp. 29-42, 1996.
[20] L. Ellis and K. H. Chow, "Protein structure prediction from primary sequence.."
http://www.biophysics.org/, Biophysical Society. Maryland, USA, 2004.
[21] W. Hart and S. Istrail, "Fast protein folding in the hydrophobic-hydrophilic
model within three-eights of optimal," Journal of Computational Biology,
Vol. 3, No. 1, pp. 53-96, 1996.
[22] W. Hart and S. Istrail, "Lattice and off-lattice side chain models of protein
folding: Linear time structure prediction better than 86% of optimal," Journal
of Computational Biology, Vol. 4, No. 3, pp. 241-259, 1997.
[23] W. Hart and S. Istrail, "Robust proofs of NP-hardness for protein folding: general lattices and energy potentials," Journal of Computational Biology, Vol. 4,
No. 1, pp. 1-22, 1997.
[24] S. HenikoR and J. G. HenikoR, "Amino acid substitution matrices from protein blocks.," Proceedings of the National Academy of Sciences, Vol. 89, USA,
pp. 10915-10919, 1992.
[25] D. A. Hinds and M. Levitt, "Exploring conformational space with a simple
lattice model for protein structure," Journal of Molecular Biology, Vol. 243,
No. 4, pp. 668-682, 1994.
[26] D. T. Jones, "Genthreader: An efficient and reliable protein fold recognition method for genomic sequences.," Journal of Molecular Biology, Vol. 287,
pp. 797-815, 1999.
[27] I. T. Makagiansar, P. D. Nguyen, A. Ikesue, K. Kuczera, W. Dentler, J. L.
Urbauer, N. Galeva, M. Alterman, and T. J. Siahaan, "Cdisul‾de bond for-
mation promotes the cis- and trans-dimerization of the e-cadherin-derived first
repeat.," Journal of Biological Chemistry, Vol. 277, No. 18, pp. 16002-16010,
2002.
[28] M. A. Marti-Renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo, and A. Sali,
"Comparative protein structure modeling of genes and genomes.," Annual Review of Biophysics and Biomolecular Structure, Vol. 29, pp. 291-325, 2000.
[29] G. Mauri, A. Piccolboni, and G. Pavesi, "Approximation algorithms for protein
folding prediction.," Proceedings of the 10th Annual Symposium on Discrete
Algorithms (SODA), San Antonio, USA, pp. 945-946, 1999.
[30] K. Nagano, Prediction of Protein Structure and the Principles of Protein Con-
formation. New York: Plenum Press, 1989.
[31] N. I. H. (National Institutes of Health), "NCBI (National Center for Biotechnology Information)." http://www.ncbi.nlm.nih.gov/.
[32] S. Needleman and C. Wunsch, "A general method applicable to the search for
similarities in the amino acid sequence of two proteins," Journal of Molecular
Biology, Vol. 48, pp. 442-453, 1970.
[33] A. Newman, "A new algorithm for protein folding in the HP model," Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,
San Francisco, California, pp. 876-884, 2002.
[34] A. R. Ortiz, A. Kolinski, and J. Skolnick, "Fold assembly of small proteins using
monte carlo simulations driven by retsraints derived from multiple sequence
alignments.," Journal of Molecular Biology, Vol. 277, pp. 419-448, 1998.
[35] A. D. Palu, A. Dovier, and F. Fogolari, "Constraint logic programming approach to protein structure prediction.," BMC Bioinformatics, Vol. 5, pp. 186-
198, 2004.
[36] A. Patton, W. F. Punch III, and E. Goodman, "A standard GA approach to na-
tive protein structure prediction," Proceedings of 6th International Conference
On Genetic Algorithm, Dublin, Ireland, pp. 574-581, 1995.
[37] J. W. Prothero, "Correlation between the distribution of amino acids and alpha
helices.," Journal of Biophysics, Vol. 6, pp. 367-370, 1966.
[38] O. B. Ptitsyn, "Statistical analysis of the distribution of amino acid residues
among helical and nonhelical regions in globular proteins.," Journal of Molecular Biology, Vol. 42, pp. 501-510, 1969.
[39] A. A. Rabow and H. A. Scheraga, "Improved genetic algorithm for the protein
folding problem by use of a cartesian combination operator.," Protein Science,
Vol. 5, No. 9, pp. 1800-1815, 1996.
[40] B. Rost, "Protein structures sustain evolutionary drift.," Folding and Design,
Vol. 2, pp. 19-24, 1997.
[41] B. Rost, "Twilight zone of protein sequence alignments.," Protein Engineering,
Vol. 12, pp. 85-94, 1999.
[42] M. SchiRer and A. B. Edmundson, "Use of helical wheels to represent the
structures of proteins and identify segments with helical propensity," Journal of
Biophysical, Vol. 7, pp. 121-135, 1967.
[43] A. Shmygelska, R. Hernandez, and H. H. Hoos, "An ant colony optimization
algorithm for the 2d hp protein folding problem.," Proceedings of the 3rd In-
ternational Workshop on Ant Algorithms, pp. 40-52, 2002.
[44] A. Shmygelska and H. H. Hoos, "An improved ant colony optimisation algorithm for the 2d hp protein folding problem.," Proceedings of the 16th Canadian
Conference on Artificial Intelligence, pp. 400-417, 2003.
[45] A. Shmygelska and H. H. Hoos, "An ant colony optimisation algorithm for the
2d and 3d hydrophobic polar protein folding problem," BMC Bioinformatics,
Vol. 6, No. 30, 2005.
[46] T. F. Smith and M. S. Waterman, "Identification of common molecular subsequences.," Journal of Molecular Bioinformatics, Vol. 147, pp. 195-197, 1981.
[47] D. M. Standley, J. R. Gunn, R. A. Friesner, and A. E. McDermott, "Tertiary
structure prediction of mixed alpha/beta proteins via energy minimization.,"
Proteins: Structure, Function, and Genetics, Vol. 33, No. 2, pp. 240-252, 1998.
[48] M. L. Teodoro, G. N. P. Jr, and L. E. Kavraki, "A dimensional reduction approach to modeling protein flexibility.," Proceedings of the sixth annual inter-
national conference on Computational biology, Washington, DC, USA, pp. 299-
308, 2002.
[49] R. Unger and J. Moult, "Genetic algorithms for protein folding simulations,"
Journal of Molecular Biology, Vol. 231, No. 1, pp. 75-81, 1993.
[50] W. Zheng and S. Doniach, "Protein structure prediction constrained by solution x-ray scattering data and structural homology identification," Journal of
Molecular Biology, Vol. 316, pp. 173-187, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code