Responsive image
博碩士論文 etd-0711107-144055 詳細資訊
Title page for etd-0711107-144055
論文名稱
Title
整合光模轉換偶合器與電致吸收調變器以提升其電特性與光特性
Integrated Spot-Size Converter with Electroabsorption Modulator for improving optical and electrical characteristics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-27
繳交日期
Date of Submission
2007-07-11
關鍵字
Keywords
電致吸收調變器、光模轉換耦合器
EAM, Spot-Size converter
統計
Statistics
本論文已被瀏覽 5640 次,被下載 0
The thesis/dissertation has been browsed 5640 times, has been downloaded 0 times.
中文摘要
電致吸收調變器易於與其他半導體元件整合,且具有高速與低操作偏壓特性,所以已逐漸成為光纖網路中重要的一環。為了使元件更適合操作於高頻環境,往往造成元件與光纖之插入損耗過大、耦合誤差容忍度不佳。利用整合光模轉換耦合器與電致吸收調變器以提升元件與光纖之插入損耗,並提高耦合誤差容忍度。本文接續先前工作,利用濕蝕刻與選擇性底切蝕刻主動波導來製作光模轉換耦合器與電致吸收調變器之整合元件。同時用高能量離子轟擊波導漸變區以提高波導漸變區之電阻、降低電容,並且可確保光模轉換效率與高速特性。
主動區與漸變式主動波導為p-InP、量子井與n-InP之三明治結構所構成,而光模轉換耦合器之被動波導為InGaAsP與InP交替磊晶而成。使用HBr溶液蝕刻漸變寬度為6um至8um之主動波導,並利用H2O2溶液來選擇底切蝕刻主動波導,接著藉由蝕刻方式在主動式波導下方蝕刻被動式波導。利用E-Beam蒸鍍機蒸鍍p金屬:Ti/Pt/Au與n金屬:Ni/AuGe/Ni/Au。使用PMGI製作元件平坦化與金屬攀爬之橋樑,最後蒸鍍微波餽入區與負載區之共平面式電極Ti/Au。最終,漸變式波導長度為350um。
本文已成功引入濕蝕刻技術來製作光模轉換耦合器與電致吸收調變器之整合元件。光纖與元件耦合插入損耗約為12.5dB,1V調變消光比為10dB(1570nm, TE)、10dB(1570nm, TM)。藉由Fabry-Perot方式估計光模轉換損耗約為2dB。由於使用離子佈植製程技術降低元件波導漸變區之電容、且提升該區電阻,其最終電-光頻寬約為45GHz。
Abstract
Semiconductor Electroabosortion Modualtor (EAM) has become an important element in optical fiber communications because of its capability to integrate with other semiconductor devices, high-speed and low driving voltage. However, high optical insertion loss and low tolerance in optical power coupling are main general problems to be solved in order to get high electro-optical (EO) efficiency. Monolithically integrating EAM with optical spot-size converter (SSC) can lead to high-efficiency single-mode fiber coupling, but the price is on the complex fabrication methods. In this paper, based on previous work, the selective undercut etching active region (UEAR) and the whole wet-etching techniques are employed to fabricate the integration of laterally tapered SSC and EAM. Also, by applying the ion-implantation in SSC region, the reliable transfer efficiency and also high-speed performance are obtained based on the high resistance and low parasitic capacitance in SSC.
The active region containing 10 strain compensated multiple-quantum-wells (MQWs) sandwiched by n-InP (bottom) and p-InP (top) for the electroabsorption region of EAM and also the top region of lateral tapered SSC. The converted waveguide in SSC consists of alternating InGaAsP and InP layers. An HBr-base etching solution is first used to define the top p-cladding with the widths of from 6um to 8um. An H2O2-base solution is then utilized to selectively undercut-etch the MQWs from InP material. The active waveguide p-cladding in EAM is set as 8um. After defining EAM and SSC, the converted waveguide is fabricated by aligning the top SSC and then wet-etched. By using an e-beam evaporator, Ti/Pt/Au and Ni/AuGe/Ni/Au are deposited as p- and n-type metallization, respectively. PMGI is spun serving as the passivation, planarization and bridging. The microwave coplanar waveguide (CPW) line is finally defined by depositing Ti/Au for microwave load- and feed- lines and connecting EAM. The length of SSC is 350um.
The Spot-Size Converter monolithically integrated with Electroabsortion Modulator using whole wet-etching technique is demonstrated. –12.5dB of fiber-to-fiber insertion loss and 10dB (TE) 10dB(TM) extinction ration in 1V(1570nm excitation) is obtained in this device. Using Fabry-Perot method, the average optical transfer loss in SSC is extracted to be 2dB, quite consistent with simulation results. By applying ion-implantation on SSC, the broadband EO performance 45GHz of –3dB bandwidth is achieved for 100um long device due to the low capacitance and the high resistivity in SSC.
目次 Table of Contents
目錄.....................................................................................2
致謝.....................................................................................4
中文摘要.............................................................................6
英文摘要.............................................................................8
第一章 緒論......................................................................10
1.1 前言............................................................................10
1.2研究動機.....................................................................10
1.3 研究步驟....................................................................11
1.4 論文架構....................................................................11
第二章 理論基礎與基本模擬..........................................13
2.1 電致吸收調變器....................................................... 13
2.2 光模轉換耦合器........................................................16
2.3 小結.............................................................................20
第三章 理論計算與元件特性提升...................................21
3.1主動區波導寬度之計算............................................. 21
3.2離子佈植之運用..........................................................24
3.3 小結............................................................................ 26
第四章 元件製作...............................................................28
4.1製作P型脊狀光波導....................................................29
4.2 N型電極與被動式導之製作.......................................33
4.3 Mesa與平坦化製程....................................................35
4.4 蒸鍍共平面式電極與切割線蝕刻..............................37
4.5 元件截面圖..................................................................38
第五章 結果與討論............................................................39
5.1 TLM接觸電阻量測.......................................................39
5.2 光輸出與偏壓關係.......................................................41
5.3 微波S參數....................................................................46
5.4 電-光頻率響應.............................................................47
5.5 討論..............................................................................48
第六章 結論.......................................................................54
參考文獻............................................................................55
參考文獻 References
[1] Donald J.Sterling, JR., “ Technician’s guide to fiber optics”.
[2] Sheng Z. Zhang, Yi-Jen Chiu, Patrick Abraham, and John E. Bowers, “25-GHz Polarization-Insensitive Electroabsorption Modulators with Traveling-Wave Electrodes”, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 11, NO. 2, FEBRUARY 1999
[3] F. Devaux and A. Carenco, ”Optical processing electroabsorption modulators,” in OFC’98 Tech. Dig., 1998, pp. 285-287, paper ThH3.
[4] R. E. Smith, C. T. Sullivan, and A. Vawter, G.R.Hadley,“Reduced Coupling Loss Ysing A Tapered-Rib Adibatic-Following Fiber Coupler,” IEEE PHOTONIC. TECHNOLOGY LETTERS, VOL. 8, NO. 8, 1996
[5] K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector design and measurements,” IEEE J. Sel. Top. Quantum Electron. , vol. 2, pp. 622-629, 1996.
[6] K. S. Giboney, J. W. Rodwell, and J. E. Bowers, “Traveling-wave photode -tector theory,” IEEE Trans. Microw. Theory Tech, vol. 45, pp. 1310-1319, 1997.
[7] Shengzhong Zhang, “Traveling-wave Electroabsorption Modulators,” University of California, Santa Barbara, CA, Ph.D. Dissertation, 1999
[8] Ingrid Moerman, Member, IEEE, Peter P. Van Daele, Member, IEEE, and Piet M. Demeester, Member, IEEE, “A Review on Fabrication Technologies for the Monolithic Integration of Tapers with III–V Semiconductor Devices,” IEEE Journal OF Selected Topics in Quantum Electronics, VOL. 3, NO. 6, December 1997.
[9] Lianping Hou, WeiWang, Hongliang Zhu, Fan Zhou, LufengWang and Jing Bian, “Monolithically integrated laser diode andelectroabsorption modulator with dual-waveguide spot-size converter input and output,” Institute OF Physics Publishing Semiconductor Science and Technology 2005
[10] Xia, John K. Thomson, Milind R. Gokhale, Pavel V. Studenkov, Jian Wei, Wilson Lin, and Stephen R. Forrest, “An Asymmetric Twin-Waveguide High-Bandwidth Photodiode Using a Lateral Taper Coupler,” IEEE Photonics Technology Letters, VOL. 13, NO. 8, August 2001
[11] 蔡順安, “Investigation and Fabrication”, of the Integration of Traveling- Wave Electroabsorption Modulator and Optical Mode Converter using Wet-Etching method National Sun Yat-sen University, Institute of Electro-Optical Engineering, 2006
[12] Thoms Feuchter and Carsten Thirstrup, “ High Precision Planar Waveguide Propagation Loss Mesurement Technique Using a Fabry Perot Cavity”, IEEE Photonics Technology Letters, VOL.6 NO.10 October 1994.
[13] V. Vusirikala, S. S. Saini, R. E. Bartolo, S. Agarwala, R.D. Whaley, F. G. Johnson, D. R. Stone, and M. Dagenais, “1.55um InGaAsP-InP Laser Arrays with Integrated-Mode Expanders Fabricated Using a Single Epitaxial Growth”, IEEE Journal of Selected Topics In Quantum Electronics, VOL. 3, NO. 6, December 1997.
[14] Mee-Koy Chin, Chee-Wei Lee, “Polarization-independent vertical coupler for photonics integration”, 12 January 2004 / Vol. 12, NO. 1 / Optics Express 117.
[15] 施敏, “半導體物理元件”
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.106.232
論文開放下載的時間是 校外不公開

Your IP address is 18.223.106.232
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code