Responsive image
博碩士論文 etd-0711107-162649 詳細資訊
Title page for etd-0711107-162649
論文名稱
Title
ZigBee 2.45 GHz 頻帶之傳接器和適用於 DVB-H 接收機之 2K/4K/8K 多模式快速傅立葉轉換器
A ZigBee Transceiver Used in 2.45 GHz Band and a 2K/4K/8K Multimode Fast Fourier Transformation for DVB-H Receivers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-20
繳交日期
Date of Submission
2007-07-11
關鍵字
Keywords
手持式數位視訊廣播、多模式快速傅立葉轉換器、無線個人區域網路
ZigBee, DVB-H, Multimode Fast Fourier Transformation
統計
Statistics
本論文已被瀏覽 5701 次,被下載 0
The thesis/dissertation has been browsed 5701 times, has been downloaded 0 times.
中文摘要
本論文包含兩個主題,第一個主題是 ZigBee 2.45 GHz 頻帶之傳接器,第二個主題是適用於 DVB-H 接收機之 2K/4K/8K 多模式快速傅立葉轉換器。
第一個主題包含模擬及硬體設計,此晶片為應用於 IEEE Std 802.15.4 無線個人區域網路標準之實體層設計,包含 2.45 GHz頻帶的傳送端與接收端的電路實現,在時脈 8 MHz 的量測功率最大為 731 μW,符合低功率設計的需求。
第二個主題包含模擬及硬體設計,同時我們提出了一個可處理循序資料之單晶片快速傅立葉轉換器的實做方法,搭配管線化架構以及 radix-2、radix-22、radix-23 等運算單元,我們並提出一種共用蝴蝶型運算架構的方法來達成此一目的。
Abstract
This thesis includes two topics. The first topic is a ZigBee transceiver used in 2.45 GHz
band design. The second topic is a 2K/4K/8K multimode fast Fourier transformation ( FFT ) for
DVB-H demodulators.
The first topic includes simulations and hardware design. The chip is a physical layer
design compliant with IEEE Std 802.15.4 standard, including a transmitter and a receiver for
2.45 GHz band. The measurement of the maximum power on silicon is about 731 μW at 8
MHz. It is proved to be compliant with the low power consumption requirement specified by the
standard.
The second topic includes simulations and hardware design of an FFT for DVB-H
demodulators. This processor is based on a pipeline architecture with radix-2, radix-22 and
radix-23 computation element. We propose one sharing butterfly architecture to be used in the
variable length FFT processor.
目次 Table of Contents
致 謝 i
摘 要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 簡介 1
1.1 前言 1
1.2 ZigBee之相關技術及文獻探討 3
1.3 FFT 之相關技術及文獻探討 5
1.4 論文架構 6
第二章 ZigBee 2.45 GHz 頻帶之傳接器 7
2.1 ZigBee 簡介 7
2.2 ZigBee 實體層規格簡介 8
2.2.1 實體層頻帶與調變係數 8
2.2.2 PPDU 封包格式 9
2.2.3 展頻方法 10
2.2.4 相位調變方法 12
2.3 傳送端系統架構 13
2.3.1 PPDU 映對 14
2.3.2 展頻 14
2.3.3 調變 15
2.3.4 脈衝整形 15
2.4 接收端系統架構 16
2.4.1 封包抵達偵測 17
2.4.2 能量偵測 21
2.4.3 頻率偏移補償 22
2.4.4 非同調解調器 23
2.4.5 封包起始點偵測 25
2.4.6 解展頻 26
2.4.7 封包容量解碼 28
2.5 模擬 28
2.5.1 傳送端模擬 29
2.5.2 接收端模擬 30
2.6 晶片量測 30
2.6.1 傳送端量測 31
2.6.2 接收端量測 33
2.7 晶片規格與結論 34
第三章 適用於 DVB-H 接收機之 2K/4K/8K 多模式快速傅立 葉轉換器 35
3.1 簡介 35
3.2 演算法說明 36
3.2.1 快速離散傅立葉轉換 36
3.2.2 Radix - 2 演算法 37
3.2.3 Radix - 2 / 4 演算法 38
3.2.4 Radix - 2 / 4 / 8 演算法 39
3.3 系統架構 41
3.3.1 旋繞因子 42
3.3.2 Radix - 2 模組 43
3.3.3 Radix - 2 / 4 模組 44
3.3.4 Radix - 2 / 4 / 8 模組 44
3.4 模擬 46
3.5 晶片規格與結論 48
第四章 結論與展望 50
參考文獻 51
參考文獻 References
[1]
IEEE Std 802.15.4-2003, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” Oct. 2003.
[2]
http://www.ZigBee.org/
[3]
http://www.ntpo.org.tw/
[4]
C. N. Coelho, D. C. Silva, J. M. Mata, and M. A. M. Vieira, “Survey on wireless sensor network devices,” in Proc. of IEEE Inter. Conf. Emerging Technologies and Factory Automation (ETFA’03), vol. 1, pp. 537-544, Sept. 2003.
[5]
A. Alheraish, “Design and implementation of home automation system,” IEEE Trans. on Consumer Electronics, vol. 50, no. 4, pp. 1087-1092, Nov. 2004.
[6]
Q. Shan, Y. Liu, G. Prosser, and D. Brown, “Wireless intelligent sensor networks for refrigerated vehicle,” Proceedings of the IEEE 6th Circuits and Systems Symposium, vol. 2, pp. 525-528, June. 2004.
[7]
E. Callaway, P. Gorday, L. Hester, J. A. Gutierrez, M. Naeve, B. Heile, and V. Bahl, “Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 70-77, Aug. 2002.
[8]
http://www.ZigBee.org/
[9]
W. Kluge, F. Poegel, H. Roller, M. Lange, T. Ferchland, L. Dathe, and D. Eggert, “A Fully Integrated 2.4 GHz IEEE 802.15.4 Compliant Transceiver for ZigBee Applications,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2767-2775, Dec. 2006.
[10]
E. Bidet, D. Castelain, C. Joanblanq, and P. Stenn, “A Fast Single-Chip Implementation of 8192 Complex Point FFT,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 300-305, Mar. 1995.
[11]
L. Jia, Y. Gao, and H. Tenhunen, “Efficient VLSI implementation of radix-8 FFT algorithm,” IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 468-471, Aug. 1999.
[12]
J. Garcia, J. A. Michell, and A. M. Buron “VLSI Configurable Delay Commutator for a Pipeline Split Radix FFT Architecture,” IEEE Trans. Signal Processing, vol. 47, no. 11, pp. 3098-3107, Nov. 1999.
[13]
W.-C. Yeh, and C.-W. Jen, “High-speed and low-power split-radix FFT,” IEEE Trans. Signal Processing, vol. 51, pp. 864-874, Mar. 2003.
[14]
S. He, and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” International Symposium on Signal, System, and Electronics, pp. 257-262, Sept. 1998.
[15]
J.-H. Suk, D.-W. Kim, T.-W. Kwon, S.-K. Hyung, and J.-R. Choi, “A 8192 complex point FFT/IFFT for COFDM modulation scheme in DVB-T system,” 2003 Inter. SOC Conference, vol. 5, pp. 131-134, Dec. 2003.
[16]
H. P. E. Stem, and S. A. Mahmoud, “Communication Systems: Analysis and Design,” Prentice Hall, Sept. 2003.
[17]
T. Masamura, “Intersymbol interference reduction for differential MSK by nonredundant error correction,” IEEE Trans. On Vehicular Technology, vol. 39, no. 1, pp. 27-36, Feb. 1990.
[18]
T. Masamura, S. Samejima, Y. Morihiro, and H. Fuketa, “Differential detection of MSK with nonredundant error correction,” IEEE Trans. Commun., vol. COM-27, no. 6, pp. 912-918, June 1979.
[19]
S. A. Gronemeyer, and A. L. Mcbride, “MSK and offset QPSK modulation,” IEEE Trans. Commun., vol. COM-24, no. 8, pp. 809-820, Aug. 1976.
[20]
R. Mehlan, Y. E. Chen, and H. Meyr, “A fully digital feedforward MSK demodulator with joint frequency offset and symbol timing estimation for burst mobile radio,” IEEE Trans. on Vehicular Technology, vol. 42, no. 4, pp. 434-443, Nov. 1993.
[21]
C.-C. Wang, J.-M. Huang, L.-H. Lee, S.-H. Wang, and C.-P. Li, “A Low-Power 2.45 GHz ZigBee Transceiver for Wearable Personal Medical Devices in WPAN,” 2007 IEEE Inter. Conf. on Consumer Electronics (ICCE’2007), pp. 1-2, Jan. 2007.
[22]
L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm and implementation,” Proc. of the IEEE 11th Annual International ASIC Conference, pp. 337-341, Sep. 1998.
[23]
S. He, and M. Torkelson, “Design and implementation of a 1024-point pipeline FFT processor,” IEEE Custom Integrated Circuits Conference, pp. 131-134, May 1998.
[24]
Y.-T. Lin, P.-Y. Tsai, and T.-D. Chiueh, “Low-power variable-length fast Fourier transform processor,” IEE Proc. Comput. Digit. Tech., vol. 152, no. 4, pp. 499-506, July 2005.
[25]
Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A Dynamic Scaling FFT Processor for DVB-T Applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, Nov. 2004.
[26]
C.-C. Wang, J.-M. Huang, and H.-C. Cheng, “A 2K/8K Mode Small-Area FFT Processor for OFDM Demodulation of DVB-T Receivers,” IEEE Transactions on Consumer Electronics, vol. 51, no. 1, pp. 28-32, Feb. 2005.
[27]
S.-K. Lu, C.-H. Yeh, and H.-W. Lin, “Efficient Built-in Self-Test Techniques for Memory-Based FFT Processors,” Proc. Pacific Rim Conference on Parallel and Distributed Computing (PRDC2004), pp. 321-326, Mar. 2004.
[28]
A. Wang, and A. Chandrakasan, “A 180-mV subthreshold FFT processor using a minimum energy design methodology, ” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 310-319, Jan. 2005.
[29]
S.-Y. Lee, C.-C. Chen, C.-C. Lee, and C.-J. Cheng, ”A Low-Power VLSI Architecture for a Shared-Memory FFT Processor with a Mixed-Radix Algorithm and a Simple Memory Control Scheme,” Proceedings of The 2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006), pp. 157-160, May 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.165.66
論文開放下載的時間是 校外不公開

Your IP address is 18.117.165.66
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code