Responsive image
博碩士論文 etd-0711107-185029 詳細資訊
Title page for etd-0711107-185029
論文名稱
Title
利用非線性數位類比轉換器實現超低功率直接數位頻率合成器與誤差補償機制
Ultra Low-Power Direct Digital Frequency Synthesizer Using a Nonlinear Digital-to-Analog Converter and an Error Compensation Mechanism
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-21
繳交日期
Date of Submission
2007-07-11
關鍵字
Keywords
電流鏡、誤差補償、非線性數位類比轉換器、直接數位頻率合成器
error compensation, nonlinear DAC, current mirror, DDFS
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
本論文包含兩個主題。第一個主題介紹一個以直線漸近法為基礎的超低功率直接數位頻率合成器 (direct digital frequency synthesizer, DDFS) 架構及電路實作。第二個主題則以第一個主題的架構,實現一具誤差補償的低功率直接數位頻率合成器。
使用非線性數位類比轉換器 (nonlinear digital-to-analog converter, nonlinear DAC) 可以簡單逼近並實現弦波方程式,取代了以往使用ROM方式的相位到振幅轉換電路以及線性數位類比轉換器。同時,也有效地減少功率消耗與硬體的複雜度。上述DDFS加入誤差補償設計後,更能大幅提高合成訊號的無寄生動態範圍 (spurious-free dynamic range, SFDR)。
Abstract
This thesis includes two topics. The first one is the architecture as well as the circuit implementation of an ultra low-power direct digital frequency synthesizer (DDFS) based on the straight line approximation. The second one is the circuit implementation of the low-power DDFS with an error compensation.
The proposed approximation technique replaces the conventional ROM-based phase-to-amplitude conversion circuitry and the linear digital-to-analog converter with a nonlinear digital-to-analog converter (DAC) to realize a simple approximation of the sine function. Thus, the overall power dissipation as well as hardware complexity can be significantly reduced. Besides, by adding the error compensation, the spurious-free dynamic range (SFDR) of the synthesized output signal can be raised drastically.
目次 Table of Contents
摘要……………………………………………………………………….i
Abstract ii
第一章 簡介 2
1.1 直接數位頻率合成器研究動機 2
1.2 具誤差補償之直接數位頻率合成器研究動機 2
1.3 論文目的 2
1.4 論文大綱 2
第二章 利用非線性數位類比轉換器實現超低功率直接數位頻率 合成器 2
2.1 簡介 2
2.2 原理概述 2
2.3 架構說明 2
2.3.1 使用非線性數位類比轉換器的直接數位頻率合成器架構 2
2.3.2 相位累加器 2
2.3.3 非線性數位類比轉換器架構 2
2.4 電路模擬與量測 2
2.4.1 控制電路輸出 2
2.4.2 相位累加器輸出 2
2.4.3 非線性數位類比轉換器輸出 2
2.4.4 佈局後模擬波形與結果 2
2.4.5 晶片佈局圖 2
2.4.6 晶片照相圖 2
2.4.7 晶片量測結果 2
2.4.8 晶片量測討論 2
第三章 利用非線性數位類比轉換器實現具誤差補償的低功率直 接數位頻率合成器 2
3.1 概論 2
3.2 取樣數對SFDR的分析 2
3.3 分割段數對SFDR的分析 2
3.4 加上誤差補償後對SFDR的分析 2
3.5 具誤差補償的直接頻率合成器架構 2
3.6 具誤差補償的直接頻率合成器之頻率控制 2
3.7 其他影響直接頻率合成器速度之要素 2
3.8 具誤差補償的直接頻率合成器之模擬結果 2
3.9 具誤差補償的直接頻率合成器之預計規格與佈局圖 2
第四章 結論 2
參考文獻 2
參考文獻 References
[1] A. Yamagishi, M. Ishikawa, T. Tsukahara, and S. Date, “A 2-V, 2-GHz
low-power direct digital frequency synthesizer chip-set for wireless
communication,” IEEE J. of Solid-State Circuits, vol. 33, no. 2, pp.
210-217, Feb. 1998.
[2] S. Mortezapour, and E. K. F. Lee, “Design of low power ROM-less
direct digital frequency synthesizer using nonlinear digital-to-analog
converter,” IEEE J. of Solid-State Circuits, vol. 34, no. 10 pp.
1350-1359, Oct. 1999.
[3] G. W. Kent, and N.-H. Sheng, “A high purity, high speed direct digital
synthesizer,” Proc. of 49th IEEE Inter.Frequency Control Symposium,
pp. 207-211, 1995.
[4] J. Vankka, “Method of mapping from phase to sine amplitude in direct
digital synthesis,” in Proc. 1996 IEEE Int. Frequency Control Symp.,
pp. 942-950, June 1996.
[5] A. Bellaouar, M. S. O’brecht, A. M. Fahim, and M. I. Elmasry, “Low-
power direct digital frequency synthesizer for wireless
communication,” IEEE J. of Solid-State Circuits, vol. 35, no. 3, pp.
385-390, March 2000.
[6] R. Larson, and S.-L. Lu, “Interpolation-based digital quadrature
frequency synthesizer,” 13th Annual IEEE Inter. ASIC/SOC Conf., pp.
48-52, 2000.
[7] K. I. Palomaki, and J. Niittylahti, “Direct digital frequency synthesizer
architecture based on Chebyshey approximation,” IEEE Thirty-Fourth
Asilomar Conference on Signals, Systems and Computers, vol. 2, pp.
1639-1643, 2000.
[8] J. M. P. Langlois, and D. Al-Khalili, “ROM size reduction with low
processing cost for digital frequency synthesis,” 2001 IEEE Pacific
Rim Conference on Communications, Computers and Signal
Processing, vol. 1, pp. 287-290, Aug. 2001.
[9] C.-C. Wang, Y.-L. Tseng, H.-C. She, C.-C. Li, and R. Hu, “13-bit
resolution ROM-less direct digital frequency synthesizer based on a
trigonometric quadruple angle formula,” IEEE, Trans. On VLSI
Systems, vol. 12, no. 9, pp. 895-900, Sep. 2004.
[10] J. Jiang and E. Lee, “A low-power segmented nonlinear DAC-based
direct digital. frequency synthesizer,” IEEE J. Solid-State Circuits, vol.
37, pp. 1326-1329, Oct. 2002.
[11] J. Tierney, C. M. Rader, and B. Gold, “A digital frequency
synthesizer,” IEEE Trans. on Audio and Electroacoustics, vol. AU-19,
pp. 48-57, 1971.
[12] H. T. Nicholas Ⅲ, H. Samueli, and B. Kim, “The optimization of direct
digital frequency synthesizer performance in the presence of finite
word length effects,” in Proceedings of the 42nd Annual Frequency
Control Symposium, pp. 357-363, 1988.
[13] B. Razavi, “Design of Analog CMOS Integrated Circuits,” Reading:
McGraw-Hill, 2001.
[14] A. Zeki, and H. Kuntman, “Accurate and high output impedance
current mirror suitable for CMOS current output stages,” Electronics
Letters, vol. 33, no. 12, June 1997.
[15] K.-H. Cheng, C.-C. Chen and C.-F. Chung, “Accurate current mirror
with high output impedance,” The 8th IEEE International Conference
on Electronics, Circuits and Systems, vol. 2, pp. 565-568, Sept. 2001.
[16] E. Sackinger, and W. Guggenbuhl, “A high-swing, high impedance
MOS cascade circuit,” IEEE J. of Solid-State Circuits, vol. 25, no. 1,
pp. 289-298, Feb. 1990.
[17] S. Mortezapour, and E. K. F. Lee, “A low power quadrature direct
digital frequency synthesizer using non-linear resistor string DACs,”
Proceedings of the 24th European Solid-State Circuits Conference
(1998 ESSCIRC), pp. 348-351, Sept. 1998.
[18] M. Kosunen, J Vankka, M. Waltari, L. Sumanen, K. Koli, and K.
Halo-nen, “A CMOS quadrature basedband frequency
synthesizer/modulator,” Analog Integrated Circuits and Signal
Processing, vol. 18 no. 1, pp. 55-67, Jan. 1999.
[19] J. Vankka, M. Waltari, M. Kosunen, and K. Halonen, “A direct digital
synthesizer with an on-chip D/A converter,” IEEE J. Solid-State
Circuits, vol. 33, pp. 218-227, Feb. 1998
[20] J. M. P. Langlois, and D. Al-Khalili, “Piecewise continuous linear
interpolation of the sine function for direct digital frequency
synthesis,” in Proc. of IEEE Radio Frequency Integrated Circuits
(RFIC) Symp, pp. 579–582, June 2003.
[21] S. Mortezapour, and E. K. F. Lee, “Design of low-power ROM-less
direct digital frequency synthesizer using nonlinear digital-to-analog
converter,” IEEE J. of Solid-State Circuits, vol. 34, pp. 1350-1359,
Oct. 1999.
[22] A. N. Mohieldin, A. A. Emira, and S. E. Sanchez, “A 100-MHz 8-mW
ROM-less quadrature direct digital frequency synthesizer,” IEEE J.of
Solid-State Circuits, vol. 10, pp. 1235-1243, Oct. 2002.
[23] A. McEwan, and S. Collins, “Direct digital frequency synthesis by
analog interpolation,” IEEE Trans. On Circuits and Systems Ⅱ:
Express Briefs, vol. 53, pp. 1249-1298, Nov. 2006.
[24] J.-M. Huang, C.-L. Lee, J.-T. Chen, and C.-C. Wang, “A low power
DDFS design with error compensation using a nonlinear digital to
analog converter,” International Symposium on Integrated Circuits
2007 (ISIC-2007), Paper ID: conf103a92, accepted, Sep. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.166.7
論文開放下載的時間是 校外不公開

Your IP address is 3.145.166.7
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code