Responsive image
博碩士論文 etd-0711108-173951 詳細資訊
Title page for etd-0711108-173951
論文名稱
Title
以混沌理論為基礎之電壓閃爍預測
Arc Furnace Voltage Flicker Prediction Based on Chaos Theory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-12
繳交日期
Date of Submission
2008-07-11
關鍵字
Keywords
電弧爐、電壓閃爍、里亞普諾夫指數、相空間、混沌
Electric arc furnace, chaos, phase space, Lyapunov exponent, voltage flicker
統計
Statistics
本論文已被瀏覽 5731 次,被下載 2806
The thesis/dissertation has been browsed 5731 times, has been downloaded 2806 times.
中文摘要
電力公司電壓閃爍的規範已被探討數十餘年,電弧爐是電力網路中引起閃爍問題的主要負載之ㄧ,如果不良的電壓閃爍程度可以被預測,那麼電力公司和用戶之間可以共同利用改善設備,如靜態虛功補償器,或熔爐控制來改善電壓閃爍問題。在過去,電弧爐的電壓變動已經被證明在本質上具有混沌的現象。本論文提出以相空間方式及非線性混沌技術的方法,分析及預測電壓閃爍。本研究探討相空間維度的決定方法和利用里亞普諾夫指數於電壓閃爍預測,以實測之電弧爐電壓閃爍資料測試結果顯示,混沌理論應用可提供效果不錯的短期電壓閃爍預測。
Abstract
Voltage flicker limitation of electric utilities has been discussed in the past three decades. Arc furnace is one of the most disturbing loads that cause flicker problems in the power network. If displeasing flicker levels are predictable, then corrective solution such as static var compensation or furnace controls could be developed in cooperation between the utility and the customer. In the past, the electric fluctuations in the arc furnace voltage have been proven to be chaotic in nature. This thesis proposes a phase space approach based on nonlinearity chaotic techniques to analyze and predict voltage flicker. The determination of the phase space dimension and the application of Lyapunov exponent for flicker prediction are described. Test results have shown that accurate prediction results are obtainable for short term flicker prediction based on chaos theory.
目次 Table of Contents
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
名詞解釋 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 電壓閃爍涵義與相關法規的規範 2
1.2.1 IEC電壓閃爍評估指標 3
1.2.2 ∆V10評估指標 4
1.3 台灣電力公司電壓閃爍管制要點 6
1.4 相關文獻 8
1.5 電壓閃爍資料 10
1.6 論文架構 13
第二章 混沌理論 15
2.1 混沌現象與特性 16
2.1.1 非線性動態行為 17
2.1.2 對初始條件的敏感性(蝴蝶效應) 18
2.1.3 奇異吸子的存在 19
2.2 碎形 21
2.3 混沌時間序列的鑑別 22
2.3.1 里亞普諾夫指數 23
2.3.2 相關維度 23
第三章 以相空間為基礎之時間序列預測 25
3.1 相空間之建構 25
3.2 以自相關函數決定延遲時間 27
3.3 以G-P演算法決定之相關維度 29
3.4 以C-C法決定之相關維度與延遲時間 31
3.5 里亞普諾夫指數 36
3.6 時間序列預測方法 40
3.7 預測結果誤差統計指標 50
第四章 電壓閃爍序列分析與預測 52
4.1 相空間參數的決定 53
4.1.1 自相關函數與G-P演算法 53
4.1.2 C-C法 55
4.2 混沌時間序列的鑑別 57
4.2.1 里亞普諾夫指數 57
4.2.2 相關維度分析 58
4.3 電壓閃爍預測 59
4.3.1 不同相空間參數建構方式下的預測比較 60
4.3.2 不同預測方法準確性比較 63
4.3.3 不同的訓練資料長度測試 69
第五章 結論與未來研究方向 72
5.1 結論 72
5.2 未來研究方向 73
參考文獻 75
參考文獻 References
[1]J. L. Guan, J. C. Gu, and C. J. Wu, “A Novel Method for Estimating Voltage Flicker, ” IEEE Trans. on Power Delivery, Vol. 20, No. 1, 2005, pp.242-247.
[2]辜志承, 吳啟瑞, 江榮城, “高壓端電壓閃爍源對低壓用戶之影響,”台灣電力綜合研究計畫報告, 民國八十三年.
[3]IEC Std., 868, “Flicker Meter-Functional and Design Specifications,” 1990.
[4]IEC Std., 61000-3-7, “Electromagnetic Compatibility, Limitation of Voltage Fluctuations and Flicker Equipment Connected to Medium and High Voltage Power Supply Systems,” 1995.
[5]蕭純育, “台電公司電壓閃爍管制要點解析”, 民國95年。
[6]“台灣電力公司電壓閃爍管制要點”, 台灣電力公司, 民國95年。
[7]P. E. King, T. L. Ochs, and A. D. Hartman, “Chaotic Response in Electric Arc Furnace,” Journal of Applied Physics, Vol. 76, 1994, pp. 2059-2065.
[8]O. C. Efrain, G. T. Heydt, E. J. Kostelich, S. S. Venkata, and A. Sundaram, “Nonlinear Deterministic Modeling of Highly Varying Load,” IEEE Transaction on Power Delivery, Vol. 14, No. 2, 1999, pp.237-242.
[9]G. Carpinelli, F. Iacovone, A. Russo, and P. Varilone, “Chaos-Based Modeling of DC Arc Furnaces for Power Quality Issues,” IEEE Transactions on Power Delivery, Vol. 19, 2004, pp. 1869-1876.
[10]F. Wang, Z. Jin, Z. Zhu, and X. Wang, “Modeling the DC Electric Arc Furnace Based on Chaos Theory and Neural Network,” Power Engineering Society General Meeting, IEEE, Vol. 3, 2005, pp.2503-2508.
[11]P. Grassberger, and I. Procaccia, “Characterization of Strange Attractors,” Physical Review Letters, Vol. 50, 1983, No. 5, pp. 3469-349.
[12]S. P. Michanos, A. C. Tsakoumis, P. Fessas, S. S. Vladov, and V. M. Mladenov, “Short-Term Load Forecasting Using a Chaotic Time Series,” Signals, Circuits and Systems, IEEE, Vol. 2, 2003, pp. 437-440.
[13]H. Mori, and S. Urano, “Short-Term Load Forecasting with Chaos Time Series Analysis,” ISAP, IEEE, 1999, pp. 133-137.
[14]J. G. Choi, J. K. Park, K. H. Kim, and J. C. Kim, “A Daily Peak Load Forecasting System Using a Chaotic Time Series,” ISAP, IEEE, 1996, pp. 283-278.
[15]E. N. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmos. Science, 1963, pp. 103-141.
[16]T.-Y. Li and J. Yorke, “Period Three Implies Chaos,” Am. Math. Monthly, 1975, pp. 985-992.
[17]B. Davies, Exploring Chaos : Theory and Experiment, Westview Press, 1999.
[18]林尚儀, “混沌車流短期交通量變化之預測-相空間局部近似法(PSLA)之應用”, 交通大學碩士論文, 民國93年。
[19]張兆旭編譯, ”Fractal導論”, 民國83年。
[20]B. Mandelbort, The Fractal Geometry of Nature, W. H. Freeman, 1982.
[21]陳信維, “混沌與碎形理論在時間序列分析之應用”, 台灣科技大學碩士論文, 民國88年。
[22]G. P. Williams, Chaos Theory Tamed, Joseph Henry Press, 1997.
[23]F. Takens, “Detecting strange attractors in turbulence,” Lecture notes in Math, 1981, pp. 361-381.
[24]S. Islam, R. L. Bars, and I. Rodriguez-Iturbe, “A Possible Explanation for Low Correlation Dimension Estimates for the Atmosphere,” Journal of Applied Meteorology, Vol. 32, 1993, No. 2, pp. 203-208.
[25]H. S. Kim, R. Eykholt, and J. D. Salas, “Nonlinear Dynamics, Delay Times and Embedding Windows,” ScienceDirect-Physica D, 1999.
[26]J. D. Salas, H. S. Kim, R. Eykholt, P. Burlando, and T. R. Green, “Aggregation and Sampling in Deterministic Chaos: Implications for Chaos Identification in Hydrological Processes,” Nonlinear Processes in Geophysics, 2005.
[27]W. A. Brock, D. A. Hsieh, and B. LeBaron, “Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence,” MIT Press, Cambridge, MA, 1991.
[28]W. A. Brock, W. D. Dechert, J.A. Scheinkman, and B. LeBaron, “A Test for Independence Based on The Correlation Dimension,” Econ. Rev. 15, 1996, pp. 197-235, MathSciNet.
[29]N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Phys. Rev. Lett. 45, 1980, p712. Full Text via CrossRef.
[30]A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov Exponents from a Time Series,” Physica 16D, North- Holland, Amsterdam, 1985, pp. 285-317.
[31]W. Kinsner, “Characterizing Chaos Through Lyapunov Metrics,” IEEE Transactions on Systems, Vol. 3, 2006, pp. 141-151.
[32]林文勇, “流化床中床質磨損與混沌分析”, 逢甲大學碩士論文, 民國91年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code