Responsive image
博碩士論文 etd-0711110-220842 詳細資訊
Title page for etd-0711110-220842
論文名稱
Title
以第一原理探討分子及半導體接點的電子及傳輸性質
The electronic and transport properties of molecular and semiconductor junctions from first-principles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-21
繳交日期
Date of Submission
2010-07-11
關鍵字
Keywords
第一原理、傳輸性質、苯、氮化鋁、金、電子結構
first-principle, transport property, gold, electronic structure, benzene, AlN
統計
Statistics
本論文已被瀏覽 5717 次,被下載 1204
The thesis/dissertation has been browsed 5717 times, has been downloaded 1204 times.
中文摘要
摘要
尋找奈米主動電子元件為奈米科技上重要的議題。此研究以第一原理計算方法以及新的使用局部區域熱平衡近似法的電流計算方法去計算金-二硫化苯分子-金、金-硫氧化苯分子-金接點以及極性半導體金-氮化鋁(0001)-金接點的電子與傳輸性質。由金-二硫化苯分子-金接點計算出的電流-電壓以及電導-電壓特性曲線與實驗值在合理的範圍內可說是吻合的。此研究鑑定出將金的5d電子當做核心電子以及將二硫化苯分子的硫原子直接吸附於金電極的表面時,都會高估電流。計算結果顯示非對稱金-硫氧化苯-金接點的電流電壓特性曲線呈現脈波形狀的雙電導狀態,此計算結果與實驗觀察也非常相像。由電子結構的分析顯示此種雙電導狀態來自於電極與分子接點間微妙的電荷轉移現象。計算得到的金-氮化鋁(0001)-金接點的電流密度-電壓特性曲線同時具有歐姆特性、開關效應以及負微分電導的行為。電子結構的計算結果顯示由於(0001)氮化鋁薄膜的極性特性所造成自有的能帶傾斜效應導致非對稱的傳輸性質並引起在氮化鋁薄膜中氮表面層這邊的電洞態以及鋁表面層這邊的界面狀態的存在。偏壓引起的電洞態、界面態以及在中間層內氮離子與鋁離子平均化學位能附近的狀態的變化,造成金-氮化鋁(0001)-金接點有趣的傳輸特性。
Abstract
Abstract
The search for nanoscale active electronic devices has been an important objective in nanoscience and nanotechnology. In this study, the electronic and transport properties of the benzene-1,4-dithiol-molecule (BDT) and Au-atom-S-benzene-ring-O-(SBO)-Au-atom junctions and the Au-AlN(0001)-Au polar semiconductor junction have been calculated using the first-principles calculation method and a new integrated piecewise thermal equilibrium approach for the current. The current-voltage (I-V) and conductance-voltage (C-V) characteristic curves obtained for the Au-BDT-Au molecular junction agreed reasonably well with experimental ones. The study of Au-BDT-Au identifies that treating Au 5d electrons as core electrons and letting the S end of BDT be bonded to the Au surface directly overestimated the current. Calculated I-V characteristic curve revealed that the asymmetric Au-SBO-Au molecular junction has a pulse-like I-V characteristic curve with dual differential conductance, which resembled well the one observed experimentally. The analysis of the electronic structures showed that this dual differential conductance transport property was due to a subtle charge transfer at the electrode-molecule contacts. The calculated J-V characteristic curve of the Au-Al(0001)-Au junction shows coexistence of ohmic, switching effect and negative differential conductance. The electronic structure calculations show the existence of an intrinsic band tilt due to the polar nature of the AlN(0001) film, which gives rise to an asymmetric transport property of the junction and the presence of hole states at the N-surface side and interface states at the Al-surface side of the AlN film. The bias induced changes of the hole states, interface states and the states of the Al and N ions in central layers in the vicinity of the local chemical potential give rise to the interesting transport property of the Au-AlN(0001)-Au junction.
目次 Table of Contents
Content
Chapter 1 / Introduction 6
Chapter 2 / The calculation method 12
2-1 The density functional theory (DFT) with the local-density approximation (LDA) 12
2-2 The pseudofunction (PSF) method 15
2-3 The molecular dynamics (MD) method 21
2-4. The calculation of current by the integrated piecewise thermal equilibrium approach 29
Chapter 3 / Electronic and transport properties of the Au-benzene-1,4-dithiol-Au (Au-BDT-Au) molecular junctions 34
3-1 Computation details 34
3-2 Electronic structure of the Au-BDT-Au molecular junction 35
3-3 The transport properties of the Au(111)-BDT-Au(111) tri-layer system 37
Chapter 4 / Electronic and transport properties of the Au-benzene-1-olate-4-thiolate-Au (Au-SBO-Au) model asymmetric molecular junction system 40
4-1 Computation details 40
4-2 Dual-conductance transport property 41
4-3 Electronic structures of high- and low-current states 42
4-4 Special properties of the asymmetric molecular junction considered in this study 43
Chapter 5 / Electronic and transport properties of the Au-AlN(0001)-Au polar semiconductor junction 46
5-1 Computation details 46
5-2 The transport property of the Au-AlN(0001)-Au junction 47
5-3 Electronic structure of the Au-AlN(0001)-Au junction 48
Chapter 6 / Conclusion 51
References 53
Table captions 58
Figure captions 58
Tables 63
Figures 64
參考文獻 References
References:
Chapter 1
[1.1] M. A. Reed, C. Zhou, C.J. Müller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997).
[1.2] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).
[1.3] W. Tian, S. Datta, S. Hong, R. Reifenberger, J. I. Henderson and C. P. Kubiak, J. Chem. Phys. 109, 2874 (1998)
[1.4] X. Xiao, B. Xu, and N. J. Tao, Nano Lett 4, 267 (2004).
[1.5] T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling , A. Yacoby and I. Bar-Joseph, Nature 436, 677 (2005).
[1.6] M. Kiguchi, S. Miura, K. Hara, M. Sawamura, and K. Murakoshi, Appl. Phys. Lett. 91, 053110 (2007); Appl. Phys. Lett. 89, 213104 (2006).
[1.7] E. Lörtscher, H. B. Weber, and H. Riel, Phys. Rev. Lett. 98, 176807 (2007).
[1.8]M. P. Samanta, W. Tian, S. Datta, J. I. Henderson, and C. P.Kubiak, Phys. Rev. B53, R7626 (1996).
[1.9] S. Data, W. D. Tian, S. H. Hong, R. Reifenberger, J. I. Henderson, C. P. Kubiak, Phys. Rev. Lett. 79, 2530 (1997).
[1.10] E. G. Emberly, G. Kirczenow, Phys. Rev. B58, 10911 (1998).
[1.11] S. N. Yaliraki, M. Kemp, M. A. Ratner, J. Am. Chem. Soc. 121, 3428 (1999).
[1.12] S. N. Yaliraki, A. E. Roitberg, C. Gonzalez, V. Mujica, M. A. Ratner, J. Chem. Phys. 111, 6997 (1999).
[1.13] Y. Xue and M. A. Ratner, Phys. Rev. B 68, 115406 (2003).
[1.14] P. E. Kornilovitch and A. M. Bratkovsky, Phys. Rev. B64, 195413 (2001).
[1.15] A. M. Bratkovsky and P. E. Kornilovitch, Phys. Rev. B67, 115307 (2003).
[1.16] C. –K. Wang and Y. Luo, J. Chem. Phys. 119, 4923 (2003).
[1.17] C. –K. Wang, Y. Fu and Y. Luo, Phys. Chem. Chem. Phys. 3, 5017 (2001).
[1.18] J. Nara, H. Kino, N. Kobayashi, M. Tsukada and T. Ohno, Thin Solid Films
438-439, 221 (2003).
[1.19] A. Tikhonov, R. D. Coalson and Y. Dahnovsky, J. Chem. Phys. 117, 567 (2002).
[1.20] K. Stokbro, J. Taylor, M. Brandbyge, J. –L. Mozos and P. Ordejon, Comput.
Mater. Sci. 27, 151 (2003).
[1.21] N.D. Lang, Phys. Rev. B52, 5335 (1995).
[1.22] P. Delaney and M. Di Ventra, Appl. Phys. Lett. 75, 3787 (1999).
[1.23] M. Di Ventra, S.T. Pantelides, N.D. Lang, Appl. Phys.Lett. 76, 3448 (2000).
[1.24] M. Di Ventra, S. G. Kim, S.T. Pantelides, N.D. Lang, Phys. Rev. Lett. 86, 288 (2001).
[1.25] M. Di Ventra, S.T. Pantelides, N.D. Lang, Phys. Rev. Lett. 84, 979 (2000).
[1.26] M. Di Ventra, N.D. Lang, Phys. Rev. B65, 045402 (2002).
[1.27] M. Di Ventra, S.T. Pantelides, N.D. Lang, Phys. Rev. Lett. 88, 046801 (2002).
[1.28] M. Di Ventra, N.D. Lang, S.T. Pantelides, Chem. Phys. 281, 189 (2002).
[1.29] Y. Xue and M. A. Ratner, Phys. Rev. B69, 085403 (2004).
[1.30] H. Kondo, H. Kino, J. Nara, T. Ozaki, and T. Ohno, Phys. Rev. B73, 235323
(2006).
[1.31] H. Chen, J. Q. Lu, J. Wu, R. Note, H. Mizuseki, and Y. Kawazoe, Phys. Rev.
B67, 113408 (2003).
[1.32] D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo, Phys. Rev. Lett. 96, 166804 (2006).
[1.33] W. T. Geng, J. Nara and T. Ohno, Appl. Phys. Lett. 85, 5992 (2004).
[1.34] S. V. Faleev, F. Léonard, D. A. Stewart, and M. van Schilfgaarde, Phys. Rev.
B71, 195422 (2005).
[1.35] E. G. Emberly and G. Kirczenow, Phys. Rev. B64, 235412 (2001)
[1.36] J. C. Cuevas, J. Henrich, F. Pauly, W. Wenzel, and G. Schön, Nanotechnology 14, R29 (2003).
[1.37] R. Pati, L. Senapati, P. M. Ajayan, and S. K. Nayak, Phys. Rev. B68, 100407(R) (2003).
[1.38] F. Evers, F. Weigend, and M. Koentopp, Phys. Rev. B69, 235411 (2004).
[1.39] J. Tomfohr and O. F. Sankey, J. Chem. Phys. 120, 1542 (2004).
[1.40] P. S. Damle, A. W. Ghosh, and S. Datta, Phys. Rev. B64, 201403 (2001).
[1.41] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University
Press, Cambridge, England, 1995), Chap. 2.
[1.42] J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001) ; 63,
121104 (2001).
[1.43] Y. Xue, S. Datta, and M. A. Ratner, Chem. Phys. 281, 151 (2002).
[1.44] M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys.
Rev. B 65, 165401 (2002).
[1.45] J. J. Palacios, A. J. Pérez-Jiménez, E. Louis, E. SanFabián, and J. A.Vergés, Phys. Rev. B 66, 035322 (2002).
[1.46] S.-H. Ke, H. U. Baranger, and W. Yang, Phys. Rev. B 70, 085410 (2004).
[1.47] Abraham Nitzan and Mark A. Ratner, Science 300, 1384 (2003).
[1.48] M. H. Tsai, T. H. Lu and Y. H. Tang , J. Appl. Phys., 104, 043703 (2008).
[1.49] M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett., 78, 3735 (2001) .
[1.50] J. Chen and M. A. Reed, J. Chem. Phys. 281, 127 (2002).
[1.51] J. Reichert, R. Ochs , D. Beckmann, Weber H B, Mayor M and Löhneysen, Phys. Rev. Lett. 88 ,176804 (2002).
[1.52] J. Reichert, H. B. Weber, M. Mayo and H. V. Löhneysen, Appl. Phys. Lett. 82, 4137 (2003)
[1.53] W. D. Wheeler and Y. Dahnovsky ,J. Chem. Phys. 129, 154112 (2008)
[1.54] Z. H. Zhang, Z. Yang, J. H. Yuan, H. Zhang, X. Q. Ding and M. J. Qiu. ,Chem. Phys. 129, 094702 (2008)
[1.55] L. A. Agapito, C. Cao and H. P. Cheng, Phys. Rev. B78 ,155421 (2008)
[1.56] C. W. Bauschlicher, Jr. and J. W. Lawson, Phys. Rev. B75, 115406 (2007)
[1.57] H. Morkoc¸, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M.Burns, J. Appl. Phys. 76, 1363 (1994).
[1.58] Properties of Group-III Nitrides, edited by J. H. Edgar, EMIS, Datareviews Series (IEE, London, 1994).
[1.59] J.-K. Ho, C.-S. Jong, C.C. Chiu, C.-N. Huang, K.-K. Shih,L.-C. Chen, F.-R. Chen, J.-J. Kai, J. Appl. Phys. 86, 4491 (1999).
[1.60] J.S. Kwak, J. Cho, S. Chae, O.H. Nam, C. Sone, Y. Park, Jpn. J. Appl. Phys. Part 1 40,6221(2001).
[1.61] S.H. Wang, S.E. Mohney, R. Birkhahn, J. Appl. Phys. 91, 3711(2002).
[1.62] C. J. Yang, M. Zhangy and Z. D. Zhang, J. Korean Phys.Soc. 43, 762 (2003).
[1.63] Y. Uemura and M. Iwata, Thin Solid Films,78, L55 (1981).
[1.64] J. L. Zhao, S. T. Tan, S. Iwan, X. W. Sun, W. Lin, and S. J. Chua, Appl. Phys. Lett. 94, 093506 (2009).
[1.65] C. Bayram, Z. Vashaei, and M. Razeghi, Appl. Phys. Lett. 96, 042103 (2010)
[1.66] M. –H. Tsai and S. K. Dey, Eur. Phys. J. Appl. Phys. 36, 125 (2006).
Chapter 2
[2.1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2.2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[2.3] L. Hedin and B. I. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971).
[2.4] L. Hedin, Phys. Rev. 139, A796 (1965).
[2.5] A. D. Becke, Phys. Rev. A38, 3098 (1988).
[2.6] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B37, 785 (1988).
[2.7] A. Görling, Phys. Rev. B53, 7024 (1996).
[2.8] R. V. Kasowski, M. –H. Tsai, T. N. Rhodin, and D. D. Chambliss, Phys. Rev. B34, 2656 (1986).
[2.9] O. K. Andersen, Phys. Rev. B12, 3060 (1976).
[2.10] Solid State Physics vol.15, edited by F. Seitz and D. Turnbul, p.224.
[2.11] K. Kambe, Z. Naturforsch 22, 322 (1967); 22, 422 (1967); 23, 1280 (1968).
[2.12] J. B. Pendry, “Low Energy Electron Diffraction,” Academic Press, London, 1974 p.137.
[2.13] H. J. Monkhorst and J. D. Pack, Phys. Rev. B13, 5188 (1976).
[2.14] Otto F. Sankey and David J. Niklewski, Phys. Rev. B40, 3979 (1989).
[2.15] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).
[2.16] M. –H. Tsai, O. F. Sankey, and John D. Dow, Phys. Rev. B46, 10464 (1992).
[2.17] M. –H. Tsai and K. C. Hass, Phys. Rev. B52, 16420 (1995).
[2.18] M. Born and R. Oppenheimer, Ann. d. Physik 84, 457 (1927).
[2.19] G. B. Bachelet, D. R. Hamnn, and M. Schlüter, Phys. Rev. B26, 4199 (1982).
[2.20] R. W. Jansen and O. F. Sankey, Phys. Rev. B36, 6520 (1987).
[2.21] F. Herman and S. Skillman, “Atomic Structure Calculations,” Prentice-Hall, Englewood Cliffs, NJ, 1963.
[2.22] H. Hellmann, “Einfuhrung in die Quantumchemie ,” Franz Deutsche, Leipzig, 1937.
[2.23] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[2.24] B. M. Deb, Rev. Mod. Phys. 45, 22 (1973).
[2.25] C.W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations,” Prentice-Hall, Engelwood, Cliffs, NJ, 1971.B71, 195422 (2005).
Chapter 3
[3.1] CRC Handbook of Chemistry and Physics, 80th edition, Edited in-chief, David R. Lide , Ph.D., Boca Raton London New York Washington, D.C. CRC Press (1999-2000).
[3.2] Y. Yourdshahyan, H. K. Zhang, and A. M. Rappe, Phys. Rev. B63, 081405(R)
(2001).
[3.3] Table of Periodic Properties of the Elements, Sargent-Welch Scientific Company, Skokie, Illinois 1980.
[3.4] S. L. Cunningham, Phys. Rev. B10, 4988 (1974).
Chapter 4
[4.1] B. J. C. Cabral,R B. Fonseca, J. M. Simões, Chem. Phys. Lett. 258, 436 (1996)
[4.2] N. Jayanthi, J. Cruz and T. Pandiyan, Chem. Phys. Lett 455, 64 (2008)
[4.3] C. C. Kaun, B. Larade, and H. Guo, Phys. Rev. B67, 121411(R) (2003).
[4.4] J. G.. Kushmerick, D. B. Holt, J. C. Yang, J. Naciri , M.H. Moore and R. Shashidhar, Phys. Rev. Lett. 89, 086802(2002)
[4.5] J. G.. Kushmerick, C. M. Whitaker, S. K. Pollack, T. L. Shull and R. Shashidha , Nanotechnology 15, S489(2004)
[4.6] Y. Chai, X. L. Zhou, P. J. Li, W. J. Zhang, Q. F. Zhang and J. L. Lu, Nanotechnology 16, 2134(2005)
Chapter 5
[5.1] Schulz H and Thiemann K H, Solid State Commun. 23,815(1997)
[5.2] M. -H. Tsai, S. Lee, F. C. Peiris, and J. K. Furdyna, Phys. Rev. B65, 235202 (2002).
[5.3] M. H. Tsai, T. H. Lu, Nanotechnology 21, 065203 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code