Responsive image
博碩士論文 etd-0711111-164054 詳細資訊
Title page for etd-0711111-164054
論文名稱
Title
三氯乙烯污染場址之微生物整治與監測
Microbial bioremediation and monitoring of a TCE-contaminated site
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-23
繳交日期
Date of Submission
2011-07-11
關鍵字
Keywords
還原脫氯作用、厭氧生物整治、三氯乙烯、變性梯度膠體電泳、即時定量PCR
reductive dechlorination, anaerobic bioremediation, DGGE, TCE, real-time PCR
統計
Statistics
本論文已被瀏覽 5658 次,被下載 79
The thesis/dissertation has been browsed 5658 times, has been downloaded 79 times.
中文摘要
本研究主旨為探討以加強式生物整治法進行三氯乙烯污染場址之整治成效及監測。於現地的三氯乙烯污染場址,添加微生物生長所需的碳源、營養鹽,以促使微生物生長進而增強三氯乙烯之降解。實驗中針對A、B兩個三氯乙烯污染場址的地下水樣檢測微生物的菌相變化,方法為針對細菌16S rRNA基因的特定區段進行PCR,再利用變性梯度膠體電泳(DGGE)進行菌相分析,並將DNA條帶進行定序與比對,以確認其所相對應的微生物。此外,亦以Dehalococcoides spp.的16S rRNA基因設計專一性的引子,利用即時定量PCR來偵測現地環境中此菌群的趨勢變化。研究結果顯示,加入乳化型釋氫基質後,營養源被分解產生適合厭氧還原脫氯作用發生的環境。檢測 volatile organic compounds,包括trichloroethene (TCE),1,1-dichloroethene (1,1-DCE) 和 vinyl chloride (VC) 的測值發現,場址A與B均有下降,表示有還原脫氯的反應在持續進行中。菌相分析的結果則觀察到,注入乳化型釋氫基質後微生物豐富度有增加,並且下游監測井的菌相較注入井豐富。而菌種鑑定的結果則發現,A與B兩場址均出現可降解三氯乙烯相關之菌種,例如:Acidovorax spp.、Burkholderiales及Pseudomonas sp.,以及其他β-proteobacterium、Comamonadaceae、Iron-reducing bacterium、Hydrogenophilaceae、Variovorax spp.、Clostridium spp.、Geobacter spp.、Rhodoferax ferrireducens、Dehalospirillum multivorans、Dehalococcoides spp.等。Dehalococcoides spp.為厭氧生物整治三氯乙烯污染場址之指標性生物,因此本研究偵測兩個場址於基質注入前後Dehalococcoides spp.的含量變化以解釋厭氧生物整治的成效。結果顯示,A場址的菌量介於4.47×103-8.26×104 CFU/ L,B場址的菌量則介於4.60×102-9.31×107 CFU/ L。基質注入之後,兩個場址中此菌群的含量都有增加,證明添加乳化型釋氫基質可有效地刺激Dehalococcoides菌群的增生,促使現地環境中三氯乙烯降解。總而言之,本研究依據不同時間點的菌相分析及Dehalococcoides菌群含量變化之結果,可提供強而有力的證據來評估現地厭氧生物整治法之成效。
Abstract
The goal of this study was to use molecular biology techniques to access and monitor the efficacy of bioremediation on a trichloroethene (TCE) polluted site. We added emulsified hydrogen releasing materials to stimulate onsite microbial growth and the biodegradation of TCE. This process was known as enhanced bioremediation. In this study, there were two bioremediation sites had been treated anaerobically. Groundwater samples were taken periodically for microbial analysis. Denaturing gradient gel electrophoresis (DGGE) was used to evaluate the variations in microbial community structures during the in situ groundwater remediation. The DGGE DNA bandings were sequenced to determine the 16S rRNA gene sequences and identify the dominate bacterial species. In addition, we used Dehalococcoides spp. 16S rRNA genes as the targets to do real-time PCR. Results show that the emulsified hydrogen releasing materials could enhance anaerobic reductive dechlorination. After addition of emulsified hydrogen releasing materials, we found that the volatile organic compounds concentrations (i.e., TCE, 1, 1-DCE and VC) were decreased. In microbial analysis, the diversities of the microbial community were increased after nutrient supplement. According to the DNA sequencing results, there were 31 bacterial species had been found that related to TCE degradation (i.e., Acidovorax sp., Burkholderiales, Pseudomonas sp., β-proteobacterium, Comamonadaceae, Iron-reducing bacterium, Hydrogenophilaceae, Clostridium sp., Geobacter sp., Rhodoferax ferrireducens, Dehalospirillum multivorans and Dehalococcoides spp.). Dehalococcoides spp. can be used as a biomarker to evaluate the efficacy of anaerobic bioremediation on a TCE contaminated site. Therefore, we quantified Dehalococcoides populations to explain the capacity of bioremediation after addition of emulsified hydrogen releasing materials to groundwater. Results reveal that Dehalococcoides cell numbers of site A were 4.47×103-8.26×104 CFU/liter, site B were 4.60×102-9.31×107 CFU/liter. This data indicated that the addition of emulsified substrate would increase the growth of total Dehalococcoides population under anaerobic conditions. Overall, results from this study demonstrated that the microbial analysis and quantities of Dehalococcoides at different time points can provide useful information to proceed with bioremediation methods.
目次 Table of Contents
論文審定書 .............................................................................i
謝誌 ........................................................................................ii
中文摘要 .............................................................................. iii
Abstract ..................................................................................v
壹 前言....................................................................................1
1.1 研究緣起..........................................................................1
1.2 三氯乙烯(Trichloroethylene, TCE)之物化特性與人體之危害.............................................................................3
1.3 含氯有機物整治方法......................................................6
1.3.1 現地化學氧化技術(in situ chemical oxidation, ISCO)...................................................................................6
1.3.2 透水性反應牆 (Permeable reactive wall)..........8
1.3.2.1 釋氧基質...................................................................9
1.3.2.2 釋氫基質...................................................................9
1.4 微生物降解含氯有機物................................................11
1.4.1 好氧環境中含氯有機物的降解................................12
1.4.1.1 好氧氧化作用(直接代謝).................................13
1.4.1.2 好氧氧化作用(共代謝).....................................13
1.4.2厭氧環境中含氯有機物的降解.................................14
1.4.2.1 厭氧還原脫氯反應(直接代謝).........................16
1.4.2.2 厭氧還原脫氯反應(共代謝).............................17
1.5 環境檢測現地污染場址................................................17
1.6分子生物學之監測技術.................................................18
1.6.1變性梯度膠體電泳.....................................................19
1.6.2菌種鑑定.....................................................................20
1.6.3 即時定量PCR(quantitative PCR,qPCR).....21
1.7 研究目的........................................................................23
貳 材料與方法.....................................................................24
2.1研究場址及添加基質整治之介紹.................................24
2.1.1 場址A監測井設置與採樣時間..................................24
2.1.2 場址B監測井設置與採樣時間..................................26
2.2 現地地下水質參數監測................................................28
2.3 地下水環境微生物DNA萃取.......................................29
2.4 聚合酶連鎖反應............................................................30
2.5 變性梯度膠體電泳........................................................31
2.6 以clone library進行定序..............................................32
2.7 NCBI比對序列..............................................................33
2.8 即時定量 PCR..............................................................34
2.8.1 配置PCR反應液........................................................34
2.8.2 建立標準曲線............................................................35
2.8.3 環境中樣品Dehalococcoides spp. 數量..............36
參 結果與討論.....................................................................37
3.1 地下水質監測分析........................................................37
3.1.1 現地DO,pH以及ORP數值變化............................37
3.1.2 TCE降解趨勢............................................................39
3.1.3 現地水質數值變化 ....................................................41
3.2 三氯乙烯污染場址之菌相分析與鑑定........................43
3.3 利用即時定量PCR偵測現地Dehalococcoides spp.之變化趨勢..........................................................................47
肆 結論.................................................................................52
伍 建議.................................................................................55
參考文獻..............................................................................56
圖表......................................................................................70
參考文獻 References
98 年度土壤及地下水污染整治年報http://sgw.epa.gov.tw/public/
行政院環境保護署 99 年度「環保創新科技研發計畫」「以綠色生物整治技術現地整治受三氯乙烯污染之地下水:現地模場試驗」EPA-99-U1U4-04-002。
吳先琪、駱尚廉,2001,以健康風險管理為依據之含氯有機化合物污染場址地下水復育技術及決策支援系統架構之研發,行政院國科會補助專題研究計畫成果報告書。
陳鴻泉,呂文賢,黃世傑,張凱茹,2007,地下水污染生物整治法-慢性釋放營養劑在台灣之應用經驗,台灣土壤及地下水環境保護協會簡訊,第二十四期,第 11頁-第 16頁。
密西根州立大學rRNA gene database (rrnDB) http://ribosome.mmg.msu.
edu/rrndb
張彤、方漢平,2003,微生物分子生態技術:16S rRNA/DNA方法,微生物學通報,香港大學土木工程系環境工程中心環境生物技術實驗室
勞工安全衛生研究所 (2009) 物質安全資料表
雷世恩,1999,以生物處理法整治三氯乙烯及四氯乙烯污染之場址,國立中山大學 環境工程研究所 碩士論文。
劉振宇,2002,氧化/還原下之現地生物整治,台灣土壤及地下水環境保護協會簡訊,第五期,第3頁-第5頁。
蔡在唐、高志明、葉琮裕、陳明華,2008,利用整治列車系統處理含氯有機物污染之地下水,台灣土壤及地下水環境保護協會簡訊,第二十八期,第 3頁-第 15頁。
蔡在唐、高志明、葉琮裕、陳明華,2006,利用整治列車概念處理受燃料油污染之土壤,台灣土壤及地下水環境保護協會簡訊,第一十八期,第 3頁-第 11頁。
劉瑋晨,2009,以基因分析法評估三氯乙烯污染地下水之微稱勿整治成效,國立中山大學 生物科學學系 碩士論文。
謝昶毅,2003,以PCR-DGGE技術分析石油碳氫化合物污染地下水之微生物相,國立中山大學 生物科學學系 碩士論文。
AFCEE. Principles and practices of enhanced anaerobic bioremediation of chlorinated solvents. US Department of Defense, Air Force Center for Environmental Excellence and the Environmental Security Technology Certification Program (ESTCP). Washington, DC, 2004.
ATSDR., 2007. Trichloroethylene(TCE) toxicity. U.S. department of health and human services, agency for toxic substances and disease registry division of toxicology and environmental medicine .
Adamson, D.A., Lyon, D.Y. and Hughes, J.B., 2004. Flux and product distribution during biological treatment of tetrachloroethene dense non-aqueous-phase liquid. Environ. Sci. Technol., 38: 2021-2028.
Ahmad, F., Schnitker, S.P. and Newell, C.J., 2007. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers. J. Contam. Hydrol., 90: 1-20.
Amann, R.I., Ludwing, W. and Schleifer, K.H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 59: 143-169.
Amarante, D., 2000. Applying in situ chemical oxidation. Pollution Engineering, 32: 40-42.
Amos, B.K., Daprato, R.C., Hughes, J.B., Pennell, K.D. and Löffler, F.E., 2007. Effects of the nonionic surfactant Tween 80 on microbial reductive dechlorination of chlorinated ethenes. Environ. Sci. Technol., 41: 1710-1716
Anderson, R.T. and Lovley, D.R., 1997. Ecology and Biogeochemistry of In Situ Groundwater Remediation. Advances in Microbial Ecology. Plenum Press. New York. 15:289-350.
Aulenta, F., Majone, M. and Tandoi, V., 2006. Enhanced anaerobic bioremediation of choorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J. Chem. Technol. Biotechnol., 81: 1463-1474.
Bano, N. and Hollibaugh, J. T., 2002. Phylogenetic composition of bacterioplankt on assemblages from the arctic ocean. Appl. Environ. Microbiol., 68: 505-518.
Bedard, D.L., Ritalahti, K.A. and Löffler, F.E., 2007. The dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl. Environ. Microbiol., 73:2513-2521.
Bennett, P., Gandhi, D., Warner, S. and Bussey, J., 2007. In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater. J. Hazard. Mater., 149:568-573.
Bielefeldt, A.R., Stensel, H.D., and Strand, S.E., 1995. Cometabolic degradation of trichloroethene and dichloroethene without intermediate toxicity. J. Environ. Eng ., 121: 791-797.
Borneman, J., Skroch, P.W., O'Sullivan, K.M. et al., 1996. Molecular microbial diversity of an agriculture soil in Wisconsin. Appl. Environ. Microbiol., 62: 1935-1943.
Brar, S.K., Verma, M.R., Surampalli, Y., Misra, K., Tyagi, R.D., Meunier, N. and Blais, J.F., 2006. Bioremediation of hazardous wastes-a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10: 59-72.
Bradley, P.M. and Chapelle, F.H., 1998. Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ. Sci. Technol., 32: 553-557.
Chang, Y.C., Okeke, B.C., Hatsu, M. and Takamizawa, K., 2001. In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1. Bioresour. Technol., 78: 141-147
Cirpka, O.A., Windfuhr, C., Bisch, G., Granzow, S., Scholz-Muramatsu H. and Kobus, H., 1999. Microbial reductive dechlorination in large-scale sandbox model. J. Environ. Eng ., 125: 861-870.
Coleman, N.V., Mattes, T.E., Gossett, J.M. and Spain, J.C., 2002. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ. Microbiol., 68: 6162-6171.
Cope, N. and Hughes, J.B., 2001. Biologically-enhanced removal of PCE from NAPL source zones. Environ. Sci. Technol., 35: 2014-2021.
Cupples, A.M., Spormann, A.M. and McCarty, P.L., 2003. Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-dichloroethene as electron acceptors as determined by competitive PCR. Appl. Environ. Microbiol., 69: 953-959.
Da Silva, M.L.B., Daprato, R.C., Gomez, D.E., Hughes, J.B., Ward, C.H., and Alvarez, P.J.J., 2006. Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation. Water Environ. Re., 78: 2456-2465.
Daprato, R.C., Löffler, F.E. and Hughes, J.B., 2007. Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy. Environ. Sci. Technol., 41: 2261-2269.
DeStefano, T.D., Gossett, J.M., and Zinder, S.H., 1992. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol., 58: 3622-3629.
Duhamel, M., Mo, K. and Edwards, E.A., 2004. Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Appl. Environ. Microbiol. 70: 5538-5545.
Faybishenko, B. and others., 2008. In situ long-term reductive bioimmobilization of Cr(VI) in groundwater using hydrogen release compound. Environ. Sci. Technol., 42: 8478-8485.
Ferguson, S.H., Woinarski, A.Z., Snape, I., Morris, C.E. and Revill, A.T., 2004. A field of in situ chemical oxidation to remediate long-term diesel contaminated antarctic soil. Cold Reg. Sci. Technol., 40: 47-60.
Fennell, D.E. and others., 1997. Comparison of bytyric acid, ethanol, lactic acid, and propionic acid as hydrogen doors for the reductive dechlorination of trichlorothene. Environ. Sci. Technol., 31: 918-925.
Fletcher, G. C., Youssef, J. F., and Gupta, S., 2008. Research issues in inactivation of Listeria monocytogenes associated with New Zealand greenshell mussel meat (Perna canaliculus) using high pressure processing. J. Aquat. Food Prod. Technol., 17: 173-194.
Foxall, K., 2008. Trichloroethylene Toxicological overview. Health Protection Agency, Chapd Hq, HPA ,1: 1-11.
Freeborn, R.A., West, K.A., Bhupathiraju, V.K., Chauhan, S., Rahm, B.G., Richardson, R.E., et al., 2005. Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors. Environ. Sci. Technol., 39: 8358-8368.
Fries M.R., Forney L.J. and Tiedje, .JM., 1997. Phenol- and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl. Environ. Microbiol., 63: 1523-1530
Friis, A.K., Heimann, A.C., Jakobsen, R., Albrechtsen, H.J., Cox, E. and Bjerg, P.L., 2007. Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res., 41: 355-364.
Futamata, H., Harayama, S., and Watanabe, K., 2001. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl. Environ. Microbiol., 67: 4671-4677
Futamata, H., Harayama, S., Hiraishi, A. and Watanabe, K., 2003. Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments. Appl. Microbiol. Biotechnol., 60: 594-600
Fung, J.M., Morris, R.M., Adrian, L. and Zinder, S.H., 2007. Expression of reductive dehalogenase genes in Dehalococcoides ethenogenes strain 195 growing on tetrachloroethene, trichloroethene, or 2,3-dichlorophenol. Appl. Environ. Microbiol., 73: 4439-4445.
Gerritse, J. and others., 1995. Complete degradation of trichloroethene by combining anaerobic dechlorinating and aerobic methanetrophic enrichment cultures. Appl. Environ. Microbiol., 43: 920.
Gerritse, J. and others., 1999. Influence of different electron donors and acceptors on dehalospiration of tetrachloroethene by Desulfitobacterium frappiere TCE1. Appl. Environ. Microbiol., 65: 5212-5221.
Gossett, J.M. and Zinder, S.H., 1997. Microbiological aspects relevant to natural attenuation of chlorinated ethenes. Proceedings of the US EPA Symposium in Natural Attenuation of Chlorinated Organics in Ground Water. 12-15.
Grostern, A. and Edwards, E.A., 2006. Growth of dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl. Environ. Microbiol., 72: 428-436.
Harkness, M.R. and others., 1999. Use of bioaugmentation to stimulate complete reductive dechlorination of trichloroethene in Dover soil columns.” Environ. Sci. Technol., 33: 1100-1109.
Hartman, S. and DeBont, J., 1992. Aerobic vinyl chloride metabolism in Mycobacterium arurum L1. Appl. Environ. Microbiol., 58: 1220-1226.
He, J.Z., Ritalahti, K.M., Aiello, M.R. and Löffler, F.E., 2003a. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl. Environ. Microbiol., 69: 996-1003.
He, J., Ritalahti, K.M., Yang, K.-L., Koenigsberg, S.S., and Löffler, F.E., 2003b. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424: 62-65.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M. and Löffler, F.E., 2005. Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environ.
Microbiol., 7: 1442-1450.
He, J.Z., Holmes, V.F., Lee, P.K.H. and Alvarez-Cohen, L., 2007. Influence of vitamin B-12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl. Environ. Microbiol., 73: 2847-2853.
Himmelheber, D.W., Pennell, K.D. and Hughes, B.J., 2007. Natural attenuation processes during in situ capping. Environ. Sci. Technol., 41: 5306-5313.
Holmes V. F., He, J., Lee, P. K. H. and Alvarez-Cohen, L., 2006. Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Appl. Microbiol. Biotechnol., 72: 5877-5883.
Hörber, C., Christensen, N., Arvin, E. et al., 1999. Tetrachloroethene dechlorination kinetics by Dehalospirillum multivorans immobilized in upflow anaerobic sludge blanket reactors. Appl. Microbiol. Biotechnol. 51: 694-699
Hölscher, T., Krajmalnik-Brown, R., Ritalahti, K.M., von Wintzingerode, F., Görisch, H., Löffler, F.E., et al., 2004. Multiple nonidentical reductive- dehalogenase-homologous genes are common in Dehalococcoides. Appl. Environ. Microbiol., 70: 5290-5297.
Hopkins, G.D. and McCarty, P.L., 1995. Field evaluation of in situ aerobic cometabolism of tric hloroethylene and three dichloroethylene isomers using phenol and toluene as the primary substrates. Environ. Sci. Technol., 29: 1628-1637.
Ishida, Hiroaki and Nakamura, Kanji, 2000. Trichloroethylene degradation by Ralstonia sp. KN1-10A constitutively expressing phenol hydroxylase: Transformation products, NADH limitation, and product toxicity. J. Biosci. Bioeng., 89: 438-445
Kao, C.M. and Lei, S.E., 2000. Using a peat biobarrier to remediate PCE/TCE contaminated aquifers. Water Res., 34: 835-845.
Kao, C.M., Chen, S.C., Wang, J.Y., Chen, Y.L. and Lee, S.Z., 2003a. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Res., 37: 27-38.
Kao, C.M., Chen, Y.L., Chen, S.C., Yeh, T.Y., and Wu, W.S., 2003b. Enhanced PCE dechlorination by biobarrier systems under different redox conditions. Water Res., 37: 4885-4894.
Kao, C.M., Huang, W.Y., Chang, L.J., Chien, H.Y. and Hou, F., 2005. Application of monitored natural attenuation to remediate a petroleum- hydrocarbon spill site. Water Sci. Technol., 53: 321-328.
Krajmalnik-Brown, R., Hölscher, T., Thomson, I.N., Saunders, F.M., Ritalahti, K.M. and Löffler, F.E., 2004. Genetic identification of a putative vinyl chloride reductase in Dehalococcoides sp. strain BAV1. Appl. Environ. Microbiol., 70: 6347-6351.
Lee, I.S., Bae, J.H. and McCarty, P.L., 2007. Comparison between acetate and hydrogen as electron donors and implications for the reductive dehalogenation of PCE and TCE. J. Contam. Hydrol., 94: 76-85.
Lenczewski, M., Jardine, P., McKay, L. and Layton, A., 2003. Natural attenuation of trichloroethylene in fractured shale bedrock. J. Contam. Hydrol., 64: 151-168.
Lenka, V., Jan N., Martina, S. and Martin, K., 2006. The biofiltration permeable reactive barrier: practical experience from Synthesia. Int. Biodeterior. Biodegrad., 58: 224-230.
Li, X.D. and Schwartz, F.W., 2004. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates. J. Contam. Hydrol., 68: 269-287.
Liu, S.J., Jiang B., Huang, G.Q. and Li, X.G., 2006. Laboratory column study for remediation of MTBE-contaminated groundwater using a biological two-layer permeable barrier. Water Res., 40: 3401-3408.
Lonergan, D. J., Jenter, H. L., Coates, J. D., Phillips, E. J. P., Schmidt, T. M. and Lovley, D. R., 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol., 178: 2402-2408.
Long, C.M. and Borden, R.C., 2006. Enhanced reductive dechlorination in columns treated with edible oil emulsion. J. Contam. Hydrol., 87: 54-72.
Maymó-Gatell, X., Nijenhuis, I. and Zinder, S.H., 2001. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by "Dehalococcoides ethenogenes". Environ Sci Technol., 35: 516-21.
McCarty, P.L. and others. 1991. In situ methanotrophic bioremediation for contaminated groundwater at St. Joseph, Michigan. Proceedings, International Symposium on In Situ and On Site Bioreclamation. San Diego, California.
McCarty, P.L. and Semprini, L., 1994. Groundwater treatment for chlorinated solvents. Handbook of Bioremediation. Lewis Publishers. Boca Raton, Florida. 87-116.
McCarty, P.L., and others., 1998. Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection. Environ. Sci. Technol., 32: 88-100.
Mera, N. and Iwasaki, K., 2007. Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils. Appl. Microbiol. Biotechnol., 77: 437-445
Middeldorp, P.J.M., Luijten, M.L.G.C., van de Pas BA, van Eekert MHA, Kengen, S.W.M., Schraa, G. and Stams, A.J.M., 1999. Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Biorem. J., 3: 151-169.
Miller, W.G., Parker, C.T., Rubenfield, M., Mendz, G.L., Wosten, M.M., Ussery, D.W. et al., 2007. The complete genome sequence and analysis of the epsilonproteobacterium Arcobacter butzleri. PLoS ONE, 2: e1358.
Moreno, J. L., Sealfon, S, C., and Gonzalez-Maeso, J., 2009. Group II metobotropic glutamate receptors and schizophrenia. Cell. Mol. Life. Sci., 66: 3777-3785.
Muyzer, G. and Smalla, K., 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 73:127-141.
Muyzer G., 1999. DGGE/TGGE: a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol., 2: 317-322.
Nakatsu, C. H., Hristova, K., Hanada, S., Meng, X. Y., Hanson, J. R., Scow, K. M. and Kamagata, Y., 2006. Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int. J. Syst. Evol. Microbiol., 56: 983-989.
Neumann, A., Wohlfarth, G. and Diekert, G., 1996. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem., 271: 16515-16519
Nicoaien, M.H. and Ramsing, N.B., 2002. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods., 50: 189-203.
Nubel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R.I., Ludwig, W. and Backhaus, H., 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol., 178: 5636-5643.
Park, J.B., Lee, S.H., Lee, J.W. and Lee, C.Y., 2002. Lab scale experiments forpermeable reactive barriers against contaminated groundwater with
ammonium and heavy metals using clinoptilolite (01-29B). J. Hazard. Mater., B95: 65-79.
Palleroni, N. J., Port, A. M., Chang, H. K. and Zylstra, G. J., 2004. Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the c-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int. J. Syst. Evol. Microbiol., 54: 1203-1207
Pfeiffer, P., Bielefeldt, A.R. Illangasekare, T. and Henry, B., 2005a. Physical properties of vegetable oil and chlorinated ethene mixtures. J. Environ. Eng., 131: 1447-1452.
Pfeiffer, P., Bielefeldt, A.R., Illangasekare, T. and Henry B., 2005b. Partitioning of dissolved chlorinated ethenes into vegetable oil. Water Res., 39: 4521-4527.
Rahm, B.G., Morris, R.M. and Richardson, R.E., 2006a. Temporal expression of respiratory genes in an enrichment culture containing Dehalococcoides ethenogenes. Appl. Environ. Microbiol., 72: 5486-5491.
Rahm, B.G., Chauhan, S., Holmes, V.F., Macbeth, T.W., Sorenson, K.S.J. and Alvarez-Cohen, L., 2006b. Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation, 17: 523-534.
Remediation Technologies Development Forum. 1997. Natural Attenuation of Chlorinated Solvents in Groundwater: Principles and Practices. Version 3.0. August.
Révész, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Mészáros, É., Mohr, A., Táncsics, A. and Márialigeti, K., 2006. Bacterial community changes in TCE biodegradation detected in microcosm experiments. Int. Biodeterior. Biodegrad., 58: 239-247.
Ritalahti, K.M., Amos, B.K., Sung, Y.,Wu, Q.Z., Koenigsberg, S.S. and Löffler, F.E., 2006. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl. Environ. Microbiol., 72: 2765-2774
Seghers, D., Wittebolle, L., Top, E. M., Verstraete,W. and Siciliano, S. D., 2004. Impact of Agricultural Practices on the Zea mays L. Endophytic Community. Appl. Environ. Microbiol., 70: 1475-1482.
Seshadri, R., Adrian, L., Fouts, D.E., Eisen, J.A., Phillippy, A.M., Methe, B.A., et al., 2005. Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Sci., 307: 105-108
Siegrist, R.L., 2002. Fundamentals of In Situ Chemical Oxidation (ISCO). Teleconference of In Situ Treatment of Groundwater Contaminated with Non-aqueous Phase Liquids, Dec. 10-11, Chicago, IL.
Sleep, B.E., Seepersad, D.J.,Mo, K., Heidorn, C.M., Hrapovic, L.,Morrill, P.L., et al., 2006. Biological enhancement of tetrachloroethene dissolution and associated microbial community changes. Environ. Sci. Technol., 40: 3623-3633.
Smits, T.H.M., Devenoges, C., Szynalski, K., Maillard, J. and Holliger, C., 2004. Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. J. Microbiol. Methods., 57: 369-378.
Smith, C.J., Nedwell, D.B., Dong, L.F. and Osborn, A.M., 2006. Evaluation of quantitative polymerase chain reaction-based approaches for determining gene copy and gene transcript numbers in environmental samples. Environ. Microbiol., 8: 804-815.
Sung, Y., K.M. Ritalahti, R.P. Apkarian, and F.E. Löffler., 2006. Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene-respiring Dehalococcoides isolate. Appl. Environ. Microbiol., 72: 1980-1987
Takami, H., Masui, N., Nakasone, K., and Horikoshi, K., 1999. Replication origin region of the chromosome of alkaliphilic Bacillus halodurans C-125. Biosci. Biotechnol. Biochem., 63: 1134-1137.
Travis, B.J. and Rosenberg, N.D. 1997. Modeling in situ bioremediation of TCE at Savannah River: Effects of product toxicity and microbial interactions on TCE degradation. Environ. Sci. Technol., 31: 3093-3102.
U.S. Environmental Protection Agency. 1986. Superfund Public Health Evaluation Manual. Office of Solid Waste and Emergency Response. Washington, D.C. October.
U.S. Environmental Protection Agency. 1998. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water. Office of Research and Development. Washington, D.C. September.
U.S. Environmental Protection Agency. 2000. Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications. EPA 542-R-00-008.
U.S. Environmental Protection Agency. 2002. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers. Office of Solid Waste and Emergency Response, Technology Innovation Office.
Van der Zaan, B., Hannes F., Hoekstra,, N., Rijnaarts, H., de Vos, W. M., Smidt, H., and Gerritse, J., 2010. Correlation of Dehalococcoides 16S rRNA and Chloroethene-ReductiveDehalogenase Genes with Geochemical Conditions in Chloroethene-Contaminated Groundwater. Appl. Environ. Microbiol., 76: 843-850.
Vogel, T.M., Criddle, C.S., and McCarty, P.L., 1987b. Transformations of halogenated aliphatic compounds. Environ. Sci. Technol., 22: 722-736.
Watanabe, K., Teramoto, M. and Harayama, S., 2002. Stable augmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ. Microbiol., 4: 577-583
Wilson, J.T. and Wilson, B.H., 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol., 29: 242-243.
Workman, D.J. and others., 1997. Microbial reduction of Vitamin B12 by Shewanella alga Strain BrY with subsequent transformation of carbon tetrachloride. Environ. Sci. Technol., 31: 2292-2297.
Wu, Y.W., Huang, G.H., Chakma, A. and Zeng, G.M., 2005. Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation. Energy Sources, 27: 221-232.
Yager, R.M. and others., 1997. Metabolic and in situ attenuation of chlorinated ethenes by naturally occurring microorganisms in a fractured dolomite aquifer near Niagara Falls, New York. Environ. Sci. Technol., 31: 3138-3147.
Yee, D. C., Maynard, J. A. and Wood, T. K., 1998. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Appl. Environ. Microbiol., 64: 112-118.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.144.32
論文開放下載的時間是 校外不公開

Your IP address is 18.217.144.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code