Responsive image
博碩士論文 etd-0711112-110624 詳細資訊
Title page for etd-0711112-110624
論文名稱
Title
合成新型金奈米簇應用於感測榖胱甘肽、汞離子以及做為輔助雷射脫附游離質譜法之基質
Novel Synthesis and Applications of Gold Nanoclusters : (1) Sensing of GSH, (2) Sensing of Mercury(II), and (3) Cluster-Assisted LDI MS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-26
繳交日期
Date of Submission
2012-07-11
關鍵字
Keywords
螢光、汞離子、榖胱甘肽、金奈米簇、基質輔助雷射脫附游離質譜法
fluorescence, matrix assisted laser desorption/ionization mass spectrometry, Hg2+, gold nanocluster, GSH
統計
Statistics
本論文已被瀏覽 5690 次,被下載 575
The thesis/dissertation has been browsed 5690 times, has been downloaded 575 times.
中文摘要
本論文主要利用金奈米簇具有的特殊光學與化學性質,開發針對不同需求的合成技術合成新型功能性金奈米簇以配合分析上的各種應用,本文包含三個部分:第一部分在低pH下(pH~3)混合第六型溶菌酶與HAuCl4反應生成具有藍色螢光的Au8金奈米簇,而當此Au8奈米簇轉換環境至高pH下時(pH~12),觀察到奈米簇尺寸由Au8轉變為Au25,而經鑑定此奈米簇尺寸的轉變為在高pH下直接合成Au25奈米簇之中間步驟,因此可推斷蛋白質穩定Au25奈米簇之合成機構,另一方面,由於結構上的特性,Au8奈米簇會受到榖胱甘肽的core-etching而造成螢光淬熄,利用此現象可以開發針對血球中榖胱甘肽濃度定量的分析方法,其定量結果經測試與傳統醫事檢驗技術接近且具有環保、便宜、樣品需求量小的優點;第二部分接續第一部分的研究,利用銀沉積於金奈米粒子表面能夠阻止金奈米粒子成長的原理,開發控制第一部分所發現之Au8轉換為Au25使兩種金奈米簇能夠共存的尺寸控制技術,而由於兩種尺寸奈米簇在結構上的特性,僅有較大的奈米簇會受到汞離子之螢光淬熄,經過最佳化後,較小的奈米簇具有之螢光波長位於471nm,較大奈米簇之螢光波長位於613 nm,利用兩者螢光強度比值If613nm/If471nm,可以得到高再現性的定量結果,而此分析方法在標準品與自來水樣品之偵測極限分別為0.1與0.4 nM;第三部分則是在含水的乙腈溶液中混合金三價離子與SA反應生成金奈米簇。而此奈米簇由於自組裝後具有特殊的結晶與表面特性,適合作為高再現性雷射脫附游離法之基質。另一方面,金奈米簇於紫外光波段具有較SA的吸收能力與有助於能量傳遞的量子侷限效應,較傳統使用之SA基質有更佳的脫附/游離效率,相較於傳統SA樣品分析方法大約33%的RSD,利用AuNCs@SA作為基質之分析方法RSD大約在6.6%,而利用此基質,可以定量Insulin、myoglobin與HSA等蛋白質樣品,且平均RSD皆在10%以下,偵測極限皆達nM等級。
Abstract
This paper, contain three parts, focus on develop synthesis method for novel functional nanocluster, base on its special optical and reactive property. In the first part, lysozyme VI was mixed with HAuCl4 under acidic condition(pH~3) and yield blue fluorescent Au8 nanocluster. When this Au8 cluster was incubate under alkaline condition (pH~12) a size evolution from Au8 to Au25 took place and monitored with fluorescence spectrum, MALDI MS, DLS. On the other hand, on the role of structural characteristic, fluorescence of Au8 cluster can be quenched by GSH as GSH induced core-etching reaction took place. Take advantage of this reaction, GSH in RBC can be quantitatively analysis by Au8 cluster. Compare with standard medical analysis method, this assay got comparable quantitative result and advantage in environmental friendly, low cost and low sample demand. Follow the first part, it was knowing that Hg2+quench fluorescence of Au25 but Au8 cluster. The second part of research development a ratiometric fluorescence assay for Hg2+ in drinking water sample, by control size evolution of nanocluster mentioned in first part by adding Ag+ into protein direct synthesis nanocluter process. Under optimize condition of bimetallic nanocluster synthesis, two separately fluorescence peak locate under 613 nm and 471 nm represent bigger size and smaller nanoclusters. Using fluorescence intensity ratio of two wavelength, concentration of Hg2+ in water sample can be determined by standard addition method with high reproducibility. Limit of detection was determined to be 0.1 and 0.4 nM, both lower than EPA permitted level in drinking water. On the third part, SA and HAuCl4 was mixed under water contained acetonitrile solution and SA caped nanocluster was form. This nanocluster after self essemble possess special crystalline and surface phenomenon and fit matrix for high reproducible laser desorption/ionization mass spectrometry. Compare with traditional matrix SA, the cluster matrix show 6.6% in RSD with 33%. And the desorption/ionization efficiency of nanocluster matrix is also much higher. Insulin, myoglobin and HSA sample can be quantitative with this matrix with mean RSD lower than 10%.
目次 Table of Contents
致謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖表目錄 vii
縮寫表 ix
壹、第六型溶菌脢修飾螢光金奈米簇:合成、機構與應用於生物分子感測器 1
1.1前言 1
1.2 實驗部分 3
1.2.1 實驗藥品 3
1.2.2 儀器設備 5
1.2.3 直接合成Au8與Au25金奈米簇 7
1.2.4 由Au8奈米簇合成Au25金奈米簇 7
1.2.5 榖胱甘?螢光檢測裝置 7
1.2.6 紅血球中榖胱甘?含量檢測 7
1.3 結果與討論 9
1.3.1 Au8 奈米簇的合成 9
1.3.2由Au8奈米簇合成Au25奈米簇 16
1.3.3蛋白質穩定金奈米簇之生成機構探討 21
1.3.4以第六型溶菌?穩定Au8金奈米簇為探針偵測榖胱甘? 25
1.4 結論 31
1.5 參考文獻 32
貳、溶菌脢修飾螢光金奈米簇尺寸控制技術開發應用於汞離子偵測自校準螢光感測器 35
2.1前言 35
2.2 實驗部分 38
2.2.1 實驗藥品與儀器 38
2.2.2雙金屬奈米簇的合成 39
2.2.3 Hg(II)自校準螢光感測系統 40
2.2.4 自來水樣品中Hg(II)含量檢測 40
2.3 結果與討論 40
2.3.1金銀合金奈米簇合成與鑑定 40
2.3.2利用雙金屬奈米簇作為自校準螢光汞離子感測器 49
2.4 結論 55
2.5 參考文獻 56
參、芥子酸直接合成金奈米簇應用於奈米簇輔助雷射脫附/游離質譜法:高再現性與游離效率 59
3.1前言 59
3.2 實驗部分 61
3.2.1 實驗藥品 61
3.2.2 儀器設備 62
3.2.3合成AuNCs@SA 63
3.2.4乙?溶液中水含量對反映的影響 63
3.2.5配置Sinapinic acid 基質溶液 63
3.2.6顯微影像取得 63
3.2.7配置分析標準品 63
3.2.8 MALDI-TOF分析 64
3.3 結果與討論 64
3.3.1 AuNPs@SA與AuNCs@SA的特徵分析 64
3.3.2反映機構探討 69
3.3.3表面現象分析 71
3.3.4將AuNCs@SAu應用於雷射脫附游離質譜法之基質 76
3.4 結論 82
3.5 參考文獻 83
參考文獻 References
1 Daniel, M. C.; Astruc, D. "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology." Chem. Rev. 2004, 104, 293-346.
2 Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. "Gold Nanorods: Synthesis, Characterization and Applications." Coord. Chem. Rev. 2005, 249, 1870-1901.
3 Wang, Z. X.; Ma, L. N. "Gold Nanoparticle Probes." Coordin Chem Rev 2009, 253, 1607-1618.
4 Choi, B. J.; Yang, J.; Jang, E.; Suh, J. S.; Huh, Y. M.; Lee, K.; Haam, S. "Gold Nanostructures as Photothermal Therapy Agent for Cancer." Anticancer Agents Med. Chem. 2011.
5 Shang, L.; Dong, S. J.; Nienhaus, G. U. "Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications." Nano Today 2011, 6, 401-418.
6 Zheng, J.; Nicovich, P. R.; Dickson, R. M. "Highly Fluorescent Noble-Metal Quantum Dots." Annu. Rev. Phys. Chem. 2007, 58, 409-431.
7 Duan, H. W.; Nie, S. M. "Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers: A New Route to Fluorescent and Water-Soluble Atomic Clusters." J. Am. Chem. Soc. 2007, 129, 2412-2413.
8 Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. "Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(Ii)." Angew. Chem. Int. Edit. 2007, 46, 6824-6828.
9 Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Retnakumari, A.; Koyakutty, M.; Nair, S.; Pradeep, T. "Luminescent Quantum Clusters of Gold in Bulk by Albumin-Induced Core Etching of Nanoparticles: Metal Ion Sensing, Metal-Enhanced Luminescence, and Biolabeling." Chem. Eur. J. 2010, 16, 10103-10112.
10 Xie, J. P.; Zheng, Y. G.; Ying, J. Y. "Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters." J. Am. Chem. Soc. 2009, 131, 888-889.
11 Schmidbaur, H.; Cronje, S.; Djordjevic, B.; Schuster, O. "Understanding Gold Chemistry through Relativity." Chemical Physics 2005, 311, 151-161.
12 Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. "Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing." Anal Chem 2011, 83, 1193-6.
13 Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K.; Cheng, J. T.; Chou, P. T. "Insulin-Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging." Angew. Chem. Int. Edit. 2011, 50, 7056-7060.
14 Lin, Y. H.; Tseng, W. L. "Ultrasensitive Sensing of Hg(2+) and Ch(3)Hg(+) Based on the Fluorescence Quenching of Lysozyme Type Vi-Stabilized Gold Nanoclusters." Anal. Chem. 2010, 82, 9194-200.
15 Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. "Ph-Dependent Synthesis of Pepsin-Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission." Adv Funct Mater 2011, 21, 3508-3515.
16 Le Guevel, X.; Hotzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. "Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy." J. Phys. Chem. C 2011, 115, 10955-10963.
17 Bao, Y. P.; Zhong, C.; Vu, D. M.; Temirov, J. P.; Dyer, R. B.; Martinez, J. S. "Nanoparticle-Free Synthesis of Fluorescent Gold Nanoclusters at Physiological Temperature." J. Phys. Chem. C 2007, 111, 12194-12198.
18 Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G. U. "Effect of Protein Adsorption on the Fluorescence of Ultrasmall Gold Nanoclusters." Small 2012, 8, 661-665.
19 Tanaka, A.; Takeda, Y.; Imamura, M.; Sato, S. "Dynamic Final-State Effect on the Au 4f Core-Level Photoemission of Dodecanethiolate-Passivated Au Nanoparticles on Graphite Substrates." Phys Rev B 2003, 68.
20 Wang, M.; Mei, Q.; Zhang, K.; Zhang, Z. "Protein-Gold Nanoclusters for Identification of Amino Acids by Metal Ions Modulated Ratiometric Fluorescence." Analyst 2012, 137, 1618-1623.
21 Chaudhari, K.; Xavier, P. L.; Pradeep, T. "Understanding the Evolution of Luminescent Gold Quantum Clusters in Protein Templates." Acs Nano 2011, 5, 8816-8827.
22 Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Gronbeck, H.; Hakkinen, H. "A Unified View of Ligand-Protected Gold Clusters as Superatom Complexes." Proceedings of the National Academy of Sciences 2008, 105, 9157-9162.
23 Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. "Extremely High Stability of Glutathionate-Protected Au-25 Clusters against Core Etching." Small 2007, 3, 835-839.
24 Muhammed, M. A. H.; Ramesh, S.; Sinha, S. S.; Pal, S. K.; Pradeep, T. "Two Distinct Fluorescent Quantum Clusters of Gold Starting from Metallic Nanoparticles by Ph-Dependent Ligand Etching." Nano Res. 2008, 1, 333-340.
25 Rahman, I.; Kode, A.; Biswas, S. K. "Assay for Quantitative Determination of Glutathione and Glutathione Disulfide Levels Using Enzymatic Recycling Method." Nat. Protocols 2007, 1, 3159-3165.
貳、溶菌脢修飾螢光金奈米簇尺寸控制技術開發應用於汞離子偵測自校準螢光感測器
1 The European Parliament and the Council of the European Union. ""Directive on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment"." 2002/95/EC.
2 Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. "Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions." Chemical Society Reviews 2012, 41, 3210-3244.
3 Clarkson, T. W.; Magos, L. "The Toxicology of Mercury and Its Chemical Compounds." Critical Reviews in Toxicology 2006, 36, 609-662.
4 Li, S.-X.; Feng-Ying, Z.; Yang, H.; Jian-Cong, N. "Thorough Removal of Inorganic and Organic Mercury from Aqueous Solutions by Adsorption on Lemna Minor Powder." Journal of Hazardous Materials 2011, 186, 423-429.
5 Di Natale, F.; Lancia, A.; Molino, A.; Di Natale, M.; Karatza, D.; Musmarra, D. "Capture of Mercury Ions by Natural and Industrial Materials." Journal of Hazardous Materials 2006, 132, 220-225.
6 Carpi, A. "Mercury from Combustion Sources: A Review of the Chemical Species Emitted and Their Transport in the Atmosphere." Water, Air, & Soil Pollution 1997, 98, 241-254.
7 Fitzgerald, W. F.; Lamborg, C. H.; Hammerschmidt, C. R. "Marine Biogeochemical Cycling of Mercury." Chemical Reviews 2007, 107, 641-662.
8 Carvalho, C. M. L.; Chew, E.-H.; Hashemy, S. I.; Lu, J.; Holmgren, A. "Inhibition of the Human Thioredoxin System." Journal of Biological Chemistry 2008, 283, 11913-11923.
9 Clarkson, T. W.; Magos, L.; Myers, G. J. "The Toxicology of Mercury — Current Exposures and Clinical Manifestations." New England Journal of Medicine 2003, 349, 1731-1737.
10 Dominguez, M. A.; Grunhut, M.; Pistonesi, M. F.; Di Nezio, M. S.; Centurion, M. E. "Automatic Flow-Batch System for Cold Vapor Atomic Absorption Spectroscopy Determination of Mercury in Honey from Argentina Using Online Sample Treatment." Journal of Agricultural and Food Chemistry 2012, 60, 4812-4817.
11 Gao, Y.; De Galan, S.; De Brauwere, A.; Baeyens, W.; Leermakers, M. "Mercury Speciation in Hair by Headspace Injection–Gas Chromatography–Atomic Fluorescence Spectrometry (Methylmercury) and Combustion-Atomic Absorption Spectrometry (Total Hg)." Talanta 2010, 82, 1919-1923.
12 Zhao, Y.; Zheng, J.; Fang, L.; Lin, Q.; Wu, Y.; Xue, Z.; Fu, F. "Speciation Analysis of Mercury in Natural Water and Fish Samples by Using Capillary Electrophoresis–Inductively Coupled Plasma Mass Spectrometry." Talanta 2012, 89, 280-285.
13 Zhou, Y.; Tian, X.-L.; Li, Y.-S.; Zhang, Y.-Y.; Li, Z.-H.; Yang, L.; Zhang, J.-H.; Wang, X.-R.; Meng, X.-M.; Liu, J.-Q. "Development of a Multi-Component Chemically Reactive Detection Conjugate for the Determination of Hg(Ii) in Water Samples." Analytica Chimica Acta 2012, 724, 98-103.
14 Zhang, Y.; Li, X.; Liu, G.; Wang, Z.; Kong, T.; Tang, J.; Zhag, P.; Yang, W.; Li, D.; Liu, L.; Xie, G.; Wang, J. "Development of Elisa for Detection of Mercury Based on Specific Monoclonal Antibodies against Mercury-Chelate." Biological Trace Element Research 2011, 144, 854-864.
15 Yuan, L.; Lin, W.; Chen, B.; Xie, Y. "Development of Fret-Based Ratiometric Fluorescent Cu2+ Chemodosimeters and the Applications for Living Cell Imaging." Organic Letters 2011, 14, 432-435.
16 Zhang, X.; Xiao, Y.; Qian, X. "A Ratiometric Fluorescent Probe Based on Fret for Imaging Hg2+ Ions in Living Cells." Angewandte Chemie International Edition 2008, 47, 8025-8029.
17 Childress, E. S.; Roberts, C. A.; Sherwood, D. Y.; LeGuyader, C. L. M.; Harbron, E. J. "Ratiometric Fluorescence Detection of Mercury Ions in Water by Conjugated Polymer Nanoparticles." Analytical Chemistry 2012, 84, 1235-1239.
18 Demchenko, A. "The Concept of Λ-Ratiometry in Fluorescence Sensing and Imaging." Journal of Fluorescence 2010, 20, 1099-1128.
19 Nolan, E. M.; Lippard, S. J. "Turn-on and Ratiometric Mercury Sensing in Water with a Red-Emitting Probe." Journal of the American Chemical Society 2007, 129, 5910-5918.
20 Dong, M.; Wang, Y.-W.; Peng, Y. "Highly Selective Ratiometric Fluorescent Sensing for Hg2+ and Au3+, Respectively, in Aqueous Media." Organic Letters 2010, 12, 5310-5313.
21 Liu, H.; Yu, P.; Du, D.; He, C.; Qiu, B.; Chen, X.; Chen, G. "Rhodamine-Based Ratiometric Fluorescence Sensing for the Detection of Mercury(Ii) in Aqueous Solution." Talanta 2010, 81, 433-437.
22 Page, L. E.; Zhang, X.; Jawaid, A. M.; Snee, P. T. "Detection of Toxic Mercury Ions Using a Ratiometric Cdse/Zns Nanocrystal Sensor." Chemical Communications 2011, 47, 7773-7775.
23 Xie, J.; Zheng, Y.; Ying, J. Y. "Highly Selective and Ultrasensitive Detection of Hg2+ Based on Fluorescence Quenching of Au Nanoclusters by Hg2+-Au+ Interactions." Chemical Communications 2010, 46, 961-963.
24 Lopez-de-Luzuriaga, J. M.; Monge, M.; Olmos, M. E.; Pascual, D.; Lasanta, T. "Amalgamating at the Molecular Level. A Study of the Strong Closed-Shell Au(I)Hg(Ii) Interaction." Chemical Communications 2011, 47, 6795-6797.
25 Burini, A.; Fackler, J. P.; Galassi, R.; Grant, T. A.; Omary, M. A.; Rawashdeh-Omary, M. A.; Pietroni, B. R.; Staples, R. J. "Supramolecular Chain Assemblies Formed by Interaction of a Π Molecular Acid Complex of Mercury with Π-Base Trinuclear Gold Complexes." Journal of the American Chemical Society 2000, 122, 11264-11265.
26 Kim, F.; Song, J. H.; Yang, P. "Photochemical Synthesis of Gold Nanorods." Journal of the American Chemical Society 2002, 124, 14316-14317.
27 Wu, Z.; Wang, M.; Yang, J.; Zheng, X.; Cai, W.; Meng, G.; Qian, H.; Wang, H.; Jin, R. "Well-Defined Nanoclusters as Fluorescent Nanosensors: A Case Study on Au25(Sg)18." Small 2012, in press.
參、芥子酸直接合成金奈米簇應用於奈米簇輔助雷射脫附/游離質譜法:高再現性與游離效率
1 Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. "Protein and Polymer Analyses up to M/Z 100 000 by Laser Ionization Time-of-Flight Mass Spectrometry." Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
2 Karas, M.; Bachmann, D.; Hillenkamp, F. "Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules." Anal. Chem. 1985, 57, 2935-2939.
3 Tholey, A.; Heinzle, E. "Ionic (Liquid) Matrices for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry—Applications and Perspectives." Analytical and Bioanalytical Chemistry 2006, 386, 24-37.
4 Wu, H.-P.; Su, C.-L.; Chang, H.-C.; Tseng, W.-L. "Sample-First Preparation:? A Method for Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Cyclic Oligosaccharides." Anal. Chem. 2007, 79, 6215-6221.
5 Taira, S.; Sugiura, Y.; Moritake, S.; Shimma, S.; Ichiyanagi, Y.; Setou, M. "Nanoparticle-Assisted Laser Desorption/Ionization Based Mass Imaging with Cellular Resolution." Anal. Chem. 2008, 80, 4761-4766.
6 Tseng, M.-C.; Obena, R.; Lu, Y.-W.; Lin, P.-C.; Lin, P.-Y.; Yen, Y.-S.; Lin, J.-T.; Huang, L.-D.; Lu, K.-L.; Lai, L.-L.; Lin, C.-C.; Chen, Y.-J. "Dihydrobenzoic Acid Modified Nanoparticle as a Maldi-Tof Ms Matrix for Soft Ionization and Structure Determination of Small Molecules with Diverse Structures." J. Am. Soc. Mass. Spectrom. 2010, 21, 1930-1939.
7 Karas, M.; Hillenkamp, F. "Laser Desorption Ionization of Proteins with Molecular Masses Exceeding 10,000 Daltons." Anal. Chem. 1988, 60, 2299-2301.
8 Dai, Y.; Whittal, R. M.; Li, L. "Two-Layer Sample Preparation:? A Method for Maldi-Ms Analysis of Complex Peptide and Protein Mixtures." Anal. Chem. 1999, 71, 1087-1091.
9 Keller, B. O.; Li, L. "Three-Layer Matrix/Sample Preparation Method for Maldi Ms Analysis of Low Nanomolar Protein Samples." J. Am. Soc. Mass. Spectrom. 2006, 17, 780-785.
10 Cohen, S. L.; Chait, B. T. "Influence of Matrix Solution Conditions on the Maldi-Ms Analysis of Peptides and Proteins." Anal. Chem. 1996, 68, 31-37.
11 Ho, Y.-C.; Tseng, M.-C.; Lu, Y.-W.; Lin, C.-C.; Chen, Y.-J.; Fuh, M.-R. "Nanoparticle-Assisted Maldi-Tof Ms Combined with Seed-Layer Surface Preparation for Quantification of Small Molecules." Anal. Chim. Acta 2011, 697, 1-7.
12 Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. "Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops." Nature 1997, 389, 827-829.
13 Weidner, S.; Knappe, P.; Panne, U. "Maldi-Tof Imaging Mass Spectrometry of Artifacts in “Dried Droplet” Polymer Samples." Analytical and Bioanalytical Chemistry 2011, 401, 127-134.
14 Fukuyama, Y.; Tanimura, R.; Maeda, K.; Watanabe, M.; Kawabata, S.-I.; Iwamoto, S.; Izumi, S.; Tanaka, K. "Alkylated Dihydroxybenzoic Acid as a Maldi Matrix Additive for Hydrophobic Peptide Analysis." Anal. Chem. 2012, 84, 4237-4243.
15 Pirman, D. A.; Yost, R. A. "Quantitative Tandem Mass Spectrometric Imaging of Endogenous Acetyl-L-Carnitine from Piglet Brain Tissue Using an Internal Standard." Anal. Chem. 2011, 83, 8575-8581.
16 Niklas, J.; Hollemeyer, K.; Heinzle, E. "High-Throughput Phospholipid Quantitation in Mammalian Cells Using Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry with N-Trifluoroacetyl-Phosphatidylethanolamine as Internal Standard." Anal. Biochem. 2011, 419, 351-353.
17 Kuo, T.-R.; Chen, J.-S.; Chiu, Y.-C.; Tsai, C.-Y.; Hu, C.-C.; Chen, C.-C. "Quantitative Analysis of Multiple Urinary Biomarkers of Carcinoid Tumors through Gold-Nanoparticle-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry." Anal. Chim. Acta 2011, 699, 81-86.
18 Kailasa, S. K.; Wu, H.-F. "One-Pot Synthesis of Dopamine Dithiocarbamate Functionalized Gold Nanoparticles for Quantitative Analysis of Small Molecules and Phosphopeptides in Saldi- and Maldi-Ms." Analyst 2012, 137, 1629-1638.
19 Tai-Chia, C.; Li-Shing, H.; Po-Chiao, L.; Yu-Chie, C.; Yu-Ju, C.; Chun-Cheng, L.; Huan-Tsung, C. "Nanomaterial Based Affinity Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Biomolecules and Pathogenic Bacteria." Recent Patents on Nanotechnology 2007, 1, 99-111.
20 Gimenez, E.; Benavente, F.; Barbosa, J.; Sanz-Nebot, V. "Ionic Liquid Matrices for Maldi-Tof-Ms Analysis of Intact Glycoproteins." Analytical and Bioanalytical Chemistry 2010, 398, 357-365.
21 Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. "Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions." Nature 2011, 476, 308-311.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code