Responsive image
博碩士論文 etd-0711114-112605 詳細資訊
Title page for etd-0711114-112605
論文名稱
Title
利用粗殼粒子動力學預測兩性共聚物硫酸軟骨素接枝聚己內酯之結構
Prediction on the configuration of CSMA–PCL amphiphilic copolymers by coarse-grained molecular dynamics simulations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-18
繳交日期
Date of Submission
2014-08-16
關鍵字
Keywords
聚己內酯、硫酸軟骨素、波茲曼反轉迭代、粗殼粒子分子動力學、分子動力學
Polycaprolactone, Iterative Boltzmann inversion, Coarse-grained molecular dynamics, Molecular dynamics, Chondroitin sulfate
統計
Statistics
本論文已被瀏覽 5646 次,被下載 584
The thesis/dissertation has been browsed 5646 times, has been downloaded 584 times.
中文摘要
本研究結合分子動力學(Molecular dynamics)與粗殼粒子動力學(Coarse-grained molecular dynamics)來模擬分析微胞粒子結構之間的特性,以助於瞭解實際系統結構之物理現象,並達到與實驗結果互相做探討。主要方法是經由波茲曼反轉迭代(Iterative Boltzmann Inversion)方法將全原子下的分佈狀態做轉換與粗殼粒子動力學模擬做連接得到勢能參數後,進行模擬硫酸軟骨素(Chondroitin sulfate, CS)與聚己內酯(Polycaprolactone, PCL)作為載體所組成的CS-PCL共聚物,在PCL共聚物在不同的接枝率組成方式之下,探討在水中改變交互作用參數及混合比例,分析最後平衡結構並探討在不同的狀況下之結構的動態特性,藉由本研究所提出之模擬方法可應用於較複雜之藥物結構分子或較大之模擬系統且有效的觀察出微胞粒子在水中的結構特性,並找出最佳化條件可以深入了解分子作用機制,提升藥物載體設計範疇。
Abstract
In this study, we use molecular dynamics and coarse-grained molecular dynamics simulations which are used to analyze the properties of the conformations of micelle, and also compare with the experiment results. The probability distributions from the fully atomic simulation are transferred by iterative Boltzmann inversion method to obtain the required potential parameters, and then conduct the simulation of the CS-PCL (Chondroitin sulfate graft Polycaprolactone) copolymers self-assembling in the water with different molecular grafting weight in aqueous. This study can help engineers clarify the characteristics and phenomena of carrier of drug molecules, as well as contributing to the application of recent technology.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
圖次 vii
表次 ix
第一章 序論 1
1.1 研究動機與目的 1
1.2 雙親性團鏈共聚物(Amphiphilic block copolymer) 3
1.3 硫酸化軟骨素與聚己內酯簡介 4
1.3.1 硫酸化軟骨素 (Chondroitin sulfate, CS) 4
1.3.2 聚己內酯(Polycaprolactone, PCL) 5
1.4 奈米藥物載體材料文獻回顧 6
1.4.1 實驗文獻 6
1.4.2 模擬文獻 8
1.5 本文架構 10
第二章 模擬方法與理論介紹 11
2.1 分子動力學 12
2.1.1 勢能參數 12
2.1.2 運動方程式 14
2.1.3 積分法則 15
2.1.4 係綜 15
2.1.5 壓力修正(Andersen) 16
2.1.6 Velocity Scaling 修正理論 18
2.2 粗殼粒子分子動力學(Coarse-grained molecular dynamics, CGMD) 18
2.2.1 建立粗殼粒子模型 19
2.2.2 粗殼粒子勢能函數 19
2.2.3 波茲曼反轉換迭代方法 21
2.2.4 積分法則 22
第三章 數值模擬方法 23
3.1 週期性邊界 23
3.2 鄰近原子表列法 24
3.2.1 截斷半徑法 24
3.2.2 維理(Verlet)表列法 25
3.2.3 巢室(Cell Link)表列法 25
3.2.4 維理表列法結合巢室表列法 26
3.3 分子動力學流程圖 27
3.4 波茲曼反轉換迭代方法流程圖 28
3.5 統計之參數計算 29
3.5.1 溶解度參數(Solubility parameter) 29
3.5.2 迴轉半徑(Radius of gyration) 29
3.5.3 平均平方位移(Mean Square Displacement) 30
第四章 結果分析與討論 31
4.1 分子動力學的物理模型 31
4.2 粗殼粒子模型與勢能函數之建構 34
4.2.1 珠子間勢能函數 35
4.2.2 珠子內勢能函數 41
4.3 材料之親疏水性分析 46
4.4 微胞之結構分析 49
4.4.1 微胞在水溶液中模擬結構建構 49
4.4.2 平衡結構之微胞形態分析 50
4.4.3 平衡結構之分佈狀態 52
4.4.4 平衡結構之微胞內部分佈狀態 54
4.4.5 微胞結構之平均平方位移分析 58
第五章 結論與未來展望 59
5.1 結論 59
5.2 未來展望 60
參考文獻 61
參考文獻 References
[1] I. Ali, K. Salim, M. A Rather, W. A Wani, and A. Haque, "Advances in nano drugs for cancer chemotherapy," Current cancer drug targets, vol. 11, pp. 135-146, 2011.
[2] F. Meng, R. Cheng, C. Deng, and Z. Zhong, "Intracellular drug release nanosystems," Materials Today, vol. 15, pp. 436-442, 2012.
[3] A. R. Pohlmann, F. N. Fonseca, K. Paese, C. B. Detoni, K. Coradini, R. C. Beck, and S. S. Guterres, "Poly (ε-caprolactone) microcapsules and nanocapsules in drug delivery," Expert opinion on drug delivery, vol. 10, pp. 623-638, 2013.
[4] D. Yang, X. Kang, P. a. Ma, Y. Dai, Z. Hou, Z. Cheng, C. Li, and J. Lin, "Hollow structured upconversion luminescent NaYF4: Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery," Biomaterials, vol. 34, pp. 1601-1612, 2013.
[5] Y. Xu, X. Jin, Q. Ping, H. Liu, M. Chen, and X. Xu, "[Recent development of natural and reconstituted lipoprotein based nano drug delivery vehicles]," Yao xue xue bao= Acta pharmaceutica Sinica, vol. 49, pp. 23-29, 2014.
[6] F. Yan, L. Li, Z. Deng, Q. Jin, J. Chen, W. Yang, C.-K. Yeh, J. Wu, R. Shandas, and X. Liu, "Paclitaxel-liposome–microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers," Journal of Controlled Release, vol. 166, pp. 246-255, 2013.
[7] H. Wei, R.-X. Zhuo, and X.-Z. Zhang, "Design and development of polymeric micelles with cleavable links for intracellular drug delivery," Progress in Polymer Science, vol. 38, pp. 503-535, 2013.
[8] V. P. Torchilin, "Micellar nanocarriers: pharmaceutical perspectives," Pharmaceutical research, vol. 24, pp. 1-16, 2007.
[9] A. Blanazs, S. P. Armes, and A. J. Ryan, "Self‐Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications," Macromolecular rapid communications, vol. 30, pp. 267-277, 2009.
[10] D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, "Nanocarriers as an emerging platform for cancer therapy," Nature nanotechnology, vol. 2, pp. 751-760, 2007.
[11] A. Z. Wang, R. Langer, and O. C. Farokhzad, "Nanoparticle delivery of cancer drugs," Annual review of medicine, vol. 63, pp. 185-198, 2012.
[12] L.-F. Wang, H.-C. Ni, and C.-C. Lin, "Chondroitin Sulfate-g-Poly (ϵ-Caprolactone) Co-Polymer Aggregates as Potential Targeting Drug Carriers," Journal of Biomaterials Science, Polymer Edition, vol. 23, pp. 1821-1842, 2012.
[13] H. Bray, J. Gregory, and M. Stacey, "Chemistry of tissues: I. Chondroitin from cartilage," Biochemical Journal, vol. 38, p. 142, 1944.
[14] M. B. Mathews and I. Lozaityte, "Sodium chondroitin sulfate-protein complexes of cartilage. I. Molecular weight and shape," Archives of biochemistry and biophysics, vol. 74, pp. 158-174, 1958.
[15] A. Rubinstein, D. Nakar, and A. Sintov, "Chondroitin sulfate: a potential biodegradable carrier for colon-specific drug delivery," International journal of pharmaceutics, vol. 84, pp. 141-150, 1992.
[16] G. Pitt, M. Gratzl, G. Kimmel, J. Surles, and A. Sohindler, "Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo," Biomaterials, vol. 2, pp. 215-220, 1981.
[17] W. Den Dunnen, P. Robinson, R. Van Wessel, A. Pennings, M. Van Leeuwen, and J. Schakenraad, "Long‐term evaluation of degradation and foreign‐body reaction of subcutaneously implanted poly (DL‐lactide‐ϵ‐caprolactone)," Journal of biomedical materials research, vol. 36, pp. 337-346, 1997.
[18] V. Sinha, K. Bansal, R. Kaushik, R. Kumria, and A. Trehan, "Poly-ϵ-caprolactone microspheres and nanospheres: an overview," International journal of pharmaceutics, vol. 278, pp. 1-23, 2004.
[19] P. Taddei, M. Di Foggia, F. Causa, L. Ambrosio, and C. Fagnano, "In vitro bioactivity of poly (epsilon-caprolactone)-apatite (PCL-AP) scaffolds for bone tissue engineering: the influence of the PCL/AP ratio," The International journal of artificial organs, vol. 29, pp. 719-725, 2006.
[20] D. A. Tomalia, A. M. Naylor, and W. A. Goddard, "Starburst dendrimers: molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter," Angewandte Chemie International Edition in English, vol. 29, pp. 138-175, 1990.
[21] K. Kataoka, A. Harada, and Y. Nagasaki, "Block copolymer micelles for drug delivery: design, characterization and biological significance," Advanced drug delivery reviews, vol. 47, pp. 113-131, 2001.
[22] V. P. Torchilin, "Structure and design of polymeric surfactant-based drug delivery systems," Journal of Controlled Release, vol. 73, pp. 137-172, 2001.
[23] K. Letchford and H. Burt, "A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes," European Journal of Pharmaceutics and Biopharmaceutics, vol. 65, pp. 259-269, 2007.
[24] L. Zhang, Y. Hu, X. Jiang, C. Yang, W. Lu, and Y. H. Yang, "Camptothecin derivative-loaded poly (caprolactone-co-lactide)-b-PEG-b-poly (caprolactone-co-lactide) nanoparticles and their biodistribution in mice," Journal of Controlled Release, vol. 96, pp. 135-148, 2004.
[25] M. G. Saunders and G. A. Voth, "Coarse-graining methods for computational biology," Annual review of biophysics, vol. 42, pp. 73-93, 2013.
[26] J. F. Dama, A. V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A. R. Dinner, and G. A. Voth, "The Theory of Ultra-Coarse-Graining. 1. General Principles," Journal of Chemical Theory and Computation, vol. 9, pp. 2466-2480, 2013/05/14 2013.
[27] I. Bahar and A. Rader, "Coarse-grained normal mode analysis in structural biology," Current opinion in structural biology, vol. 15, pp. 586-592, 2005.
[28] E. M. Curtis and C. K. Hall, "Molecular dynamics simulations of DPPC bilayers using “LIME”, a new coarse-grained model," The Journal of Physical Chemistry B, vol. 117, pp. 5019-5030, 2013.
[29] H. Lee and R. W. Pastor, "Coarse-grained model for PEGylated lipids: Effect of PEGylation on the size and shape of self-assembled structures," The Journal of Physical Chemistry B, vol. 115, pp. 7830-7837, 2011.
[30] M. Orsi and J. W. Essex, "The ELBA force field for coarse-grain modeling of lipid membranes," PloS one, vol. 6, p. e28637, 2011.
[31] J. Maupetit, P. Tuffery, and P. Derreumaux, "A coarse‐grained protein force field for folding and structure prediction," Proteins: Structure, Function, and Bioinformatics, vol. 69, pp. 394-408, 2007.
[32] S. Nawaz and P. Carbone, "Coarse-Graining Poly(ethylene oxide)–Poly(propylene oxide)–Poly(ethylene oxide) (PEO–PPO–PEO) Block Copolymers Using the MARTINI Force Field," The Journal of Physical Chemistry B, vol. 118, pp. 1648-1659, 2014/02/13 2014.
[33] C. Peter and K. Kremer, "Multiscale simulation of soft matter systems–from the atomistic to the coarse-grained level and back," Soft Matter, vol. 5, pp. 4357-4366, 2009.
[34] A. Naômé, A. Laaksonen, and D. P. Vercauteren, "A Solvent-Mediated Coarse-Grained Model of DNA Derived with the Systematic Newton Inversion Method," Journal of Chemical Theory and Computation, 2014.
[35] C.-Y. Chang and S.-P. Ju, "Investigation of methyl methacrylate-oligomer adsorbed on grooved substrate of different aspect ratios by coarse-grained configurational-bias Monte Carlo simulation," The Journal of Chemical Physics, vol. 133, pp. -, 2010.
[36] A. J. Rzepiela, M. Louhivuori, C. Peter, and S. J. Marrink, "Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites," Physical Chemistry Chemical Physics, vol. 13, pp. 10437-10448, 2011.
[37] A. V. Sangwai and R. Sureshkumar, "Coarse-Grained Molecular Dynamics Simulations of the Sphere to Rod Transition in Surfactant Micelles," Langmuir, vol. 27, pp. 6628-6638, 2011/06/07 2011.
[38] A. Mirzoev and A. P. Lyubartsev, "Systematic implicit solvent coarse graining of dimyristoylphosphatidylcholine lipids," Journal of Computational Chemistry, vol. 35, pp. 1208-1218, 2014.
[39] G. Srinivas, X. Cheng, and J. C. Smith, "Coarse-Grain Model for Natural Cellulose Fibrils in Explicit Water," The Journal of Physical Chemistry B, vol. 118, pp. 3026-3034, 2014.
[40] L. X. Peng, A. Ivetac, A. S. Chaudhari, S. Van, G. Zhao, L. Yu, S. B. Howell, J. A. McCammon, and D. A. Gough, "Characterization of a clinical polymer‐drug conjugate using multiscale modeling," Biopolymers, vol. 93, pp. 936-951, 2010.
[41] I. J. H* and K. J. G*, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," J. Chem. Phys., vol. 18, p. 817, 1950.
[42] H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds," Journal of Physical Chemistry B, vol. 102, pp. 7338-7364, Sep 1998.
[43] J. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D.Evanseck, M. J. Field, S. Fischer, J. Gao, H.Guo, S. Ha, D.Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S.Michnick, T. Ngo, D. T. Nguyen, B. Prodhom,W. E. Reiher, III, B.Roux, M. Schlenkrich, J.C.Smith,R.Stote,J.Straub,M.Watanabe,Wio’rkiewicz-Kuczera,D.Yin,M.Karplus. , "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," Phys. Chem. B., vol. 102, pp. 3586-3616, 1998.
[44] S. N. a. C. S. N. Chandra, "Local elastic properties of carbon nanotubes in the presence of tone-wales defects," Physical Review B, vol. 69, 2004.
[45] D. J. T. M. P. Allen, Comput. Simul. Liquids, Clarendon Press:Oxford Science Publications: London, 1987.
[46] H. A. Karimi-Varzaneh and F. Müller-Plathe, "Coarse-grained modeling for macromolecular chemistry," in Multiscale Molecular Methods in Applied Chemistry, ed: Springer, 2012, pp. 295-321.
[47] S. A. Sanders and A. Z. Panagiotopoulos, "Micellization behavior of coarse grained surfactant models," The Journal of Chemical Physics, vol. 132, p. 114902, 2010.
[48] G. Balasundaram and T. J. Webster, "An Overview of Nano‐Polymers for Orthopedic Applications," Macromolecular bioscience, vol. 7, pp. 635-642, 2007.
[49] D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications vol. 1: Academic press, 2001.
[50] D. C. Rapaport, "The art of molecular dynamics simulation," Cambridge University Press: London, 1997.
[51] D. Frenkel and B. Smit, "Computer simulation of liquids," Academic Press: San Diego, 1991.
[52] D. Frenkel and B. Smit, "Understanding molecular simulation," Academic Press: San Diego, 1996.
[53] C. Wu, "A combined scheme for systematically coarse-graining of stereoregular polymer blends," Macromolecules, vol. 46, pp. 5751-5761, 2013.
[54] Y.-C. Liu, J. D. Moore, T. J. Roussel, and K. E. Gubbins, "Dual diffusion mechanism of argon confined in single-walled carbon nanotube bundles," Physical Chemistry Chemical Physics, vol. 12, pp. 6632-6640, 2010.
[55] A. Maiti and S. McGrother, "Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension," The Journal of Chemical Physics, vol. 120, pp. 1594-1601, 2004.
[56] J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Polymer handbook vol. 89: Wiley New York, 1999.
[57] A. Saraç, A. Türe, Ö. Cankurtaran, and F. Yılmaz, "Determination of some thermodynamical interaction parameters of polycaprolactone with some solvents by inverse gas chromatography," Polymer international, vol. 51, pp. 1285-1289, 2002.
[58] D. Reith, M. Pütz, and F. Müller‐Plathe, "Deriving effective mesoscale potentials from atomistic simulations," Journal of Computational Chemistry, vol. 24, pp. 1624-1636, 2003.
[59] Y.-S. Liu, C.-C. Chiu, H.-Y. Chen, S.-H. Chen, and L.-F. Wang, "Preparation of Chondroitin Sulfate-g-poly (ε-caprolactone) Copolymers as a CD44-Targeted Vehicle for Enhanced Intracellular Uptake," Molecular pharmaceutics, vol. 11, pp. 1164-1175, 2014.
[60] Z. Zhou, X. Ma, E. Jin, J. Tang, M. Sui, Y. Shen, E. A. Van Kirk, W. J. Murdoch, and M. Radosz, "Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery," Biomaterials, vol. 34, pp. 5722-5735, 2013.
[61] P. K. Maiti and B. Bagchi, "Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer," Journal of Chemical Physics, vol. 131, pp. 214901_1-214901_7, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code