Responsive image
博碩士論文 etd-0711114-164838 詳細資訊
Title page for etd-0711114-164838
論文名稱
Title
近場電紡中空聚偏氟乙烯壓電纖維提升電壓輸出
Near-field electrospinning PVDF piezoelectric fibers tube to enhance voltage output
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-08-12
關鍵字
Keywords
中空、同軸針、聚偏氟乙烯、靜電紡絲、壓電纖維
near-field electrospinning, coaxial, PVDF, hollow-walled PVDF fibers
統計
Statistics
本論文已被瀏覽 5697 次,被下載 0
The thesis/dissertation has been browsed 5697 times, has been downloaded 0 times.
中文摘要
本研究使用近場靜電紡絲製程技術 (Near-field electrospinning, NFES) 為製程方法,結合滾筒收集裝置,搭配金屬同軸針注射器電紡出聚偏氟乙烯 (Polyvinylidene fluoride, PVDF)中空壓電纖維與PVDF實心壓電纖維,並研究PVDF中空纖維與PVDF實心纖維之壓電特性,討論各項參數,如內外針流率、纖維管壁厚度、纖維線徑、溶液濃度、操作電場、滾筒切線速度等實驗狀況。利用光學顯微鏡 (Optical microscope, OM),趁PVDF中空壓電纖維呈現半透明狀觀察內部結構;使用掃描式電子顯微鏡 (Scanning electron microscope, SEM) 微觀PVDF中空壓電纖維表面型態及內部中空結構。經微拉伸試驗 (Micro-tensile testing) 量測出本研究不同管壁厚度的PVDF中空壓電纖維與PVDF實心壓電纖維之伸長量、最大抗拉強度、楊氏模數等,在本實驗條件狀況下,PVDF中空壓電纖維伸長量皆大於PVDF實心壓電纖維,而PVDF中空壓電纖維在抗拉強度量測下,最大可達約32.49 MPa,比PVDF實心壓電纖維提升約11%。接著探討壓電纖維機電能轉換特性,結合平行式電極能量擷取裝置有效擷取低頻能量作電性量測,在本實驗條件狀況下經近場靜電紡絲製程中,PVDF中空壓電纖維輸出電壓皆大於PVDF實心壓電纖維。最後量測PVDF實心壓電纖維於6 MΩ阻抗下,產生的有效輸出電壓約45.66 mV,最大輸出功率約347.61 pW;並與PVDF中空壓電纖維比較在相同製作量測環境下,於阻抗為6 MΩ時,產生的有效輸出電壓約71.66 mV,最大的輸出功率約856.07 pW。最後結果得到PVDF中空壓電纖維輸出電壓比PVDF實心壓電纖維提升了約1.56倍;PVDF中空壓電纖維輸出功率比PVDF實心壓電纖維提升了約2.46倍。PVDF中空壓電纖維更適合於壓電材料方面的研究,PVDF中空壓電纖維具有較高的面積/體積比和機械剛度可以產生更多的電壓輸出。
Abstract
In this study, a near-field electrospinning (NFES) process with a metallic coaxial needle injector was used to fabricate piezoelectric Polyvinylidene fluoride (PVDF) fiber tube. We analyzed the parameters of piezoelectric PVDF fiber tube and piezoelectric PVDF solid fiber, core rate, shell rate, the weight percentage of PVDF, rotating tangential speed, electric field, and fiber diameter included. A scanning electron microscope (SEM) was utilized to observe the surface morphology of piezoelectric PVDF fiber tube and measured its diameter. The piezoelectric devices with parallel electrodes were fabricated to capture potential signal. By micro-tensile test, the results obtained the elongation of piezoelectric PVDF fiber tubes are greater than piezoelectric PVDF solid fiber in this study. One of the piezoelectric PVDF fiber tube is up to 32.49 MPa in tensile strength measurements. The research combined parallel electrodes with effective energy capture device to capture low-frequency energy for electrical measurements under experimental conditions in this study. The output voltages of the piezoelectric PVDF fiber tubes are greater than the piezoelectric PVDF solid fiber. In the experimental test, the output voltage of piezoelectric solid PVDF fiber is 45.66 mV with a load resistance of 6 MΩ. The maximum output power is 347.61 pW with a load resistance of 6 MΩ. Moreover, the piezoelectric PVDF fiber tube was also tested under the same condition and measurement. The output voltage of piezoelectric PVDF fiber tube is 71.66 mV with a load resistance of 6 MΩ. The output power is up to 856.07 pW with a load resister of 6 MΩ. The results show that the power generation of the piezoelectric PVDF fiber tube exceeds 2.46 times that of the piezoelectric PVDF solid fiber. The piezoelectric PVDF fiber tube with higher area/volume ratio and mechanical stiffness can produce more potential output voltage.
目次 Table of Contents
第一章 緒論 1
1-1 前言 1
1-2 研究背景與動機 2
1-3 研究目的 3
第二章 文獻回顧 4
2-1 靜電紡絲製程 4
2-2 壓電材料相關研究 6
2-3 PVDF壓電材料特性 8
2-4正壓電效應 9
2-5逆壓電效應 10
2-6極化處理 10
2-7壓電訊號 11
2-8靜電紡絲製備同軸纖維的製程特性 11
2-9 PVDF同軸纖維的製程特性 15
第三章 研究方法 18
3-1近場靜電紡絲製程原理及設備 18
3-2調配PVDF中空纖維溶液 22
3-3金屬同軸針注射器結構 25
3-4 PVDF實心及中空壓電纖維各實驗參數與流程 34
3-4-1金屬同軸內外針之流率與纖維線徑之關係 35
3-4-2 PVDF溶液濃度 35
3-4-3電場大小 36
3-4-4 XY雙軸式數位控制平台與滾筒旋轉收集裝置之速度 36
3-4-5抗拉強度試驗 37
3-5掃描式電子顯微鏡 38
3-6微型機性測試機 40
3-7 X光射線繞射儀 41
3-8能量擷取裝置製作 42
3-9電壓、電流、應變分析系統 43
第四章 結果與討論 46
4-1 PVDF實心及中空壓電纖維與近場靜電紡絲製程 46
4-2金屬同軸注射器內針與外針流率之控制 46
4-3 OM光學顯微鏡與SEM掃描式電子顯微鏡觀察 52
4-4 PVDF溶液濃度與線徑之關係 64
4-5電場與線徑之關係 69
4-6滾筒切線速度與線徑之關係 73
4-7拉伸試驗量測 77
4-8 XRD觀察與分析 91
4-9 PVDF壓電纖維與能量擷取裝置之電性探討 92
4-10 PVDF實心及中空壓電纖維發電量之驗證 93
4-11 PVDF壓電纖維輸出電壓 (V) 與頻率 (Hz) 與力量 (N) 之關係 98
4-12 PVDF壓電纖維電壓、電流、應變量測分析系統 102
4-13 PVDF實心及中空壓電纖維之電性探討 106
第五章 結論及未來展望 111
5-1 結論 111
5-2 未來展望 113
參考文獻 114
參考文獻 References
[1] A. Formhals, US Patent, No. 1975504, 1934.
[2] G.I. Taylor, “Electrically driven jets,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 313, pp. 453-475, 1969.
[3] E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Pawlowski and G.L. Bowlin, “Ailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly (glycolic acid) electrospinning,” Journal of Macromolecular Science, Vol. 38, pp. 1231-1243, 2001.
[4] D. Li, Y. Wang and Y. Xia, “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays,” Nano Letters, Vol. 3, No. 8, pp. 1167-1171, 2003.
[5] J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers, G.W. Coates and H.G. Craighead, “A scanning tip electrospinning source for deposition of oriented nanofibres,” Nanotechnology, Vol. 14, No. 10, pp. 1124-1129, 2003.
[6] A. Theron, E. Zussman and A.L. Yarin, “Electrostatics field assisted alignment of electrospun nanofibers,” Nanotechnology, Vol. 12, pp. 384, 2001.
[7] Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang and J. Sheng, “Preparation and properties of electrospun poly(vinylidene flouride) membranes,” Journal of Applied Polymer Science, Vol. 97, pp. 466–474, 2005.
[8] X. Ren and Y. Dzenis, “Novel continuous poly (vinylidene fluoride) nanofibers,” Materials Research Society Symposium Proceedings library, Vol. 920, pp. 55–61, 2006.
[9] C. Chang, Y.K. Fuh and L.W. Lin, ”A direct-write piezoelectric PVDF nanogenerator,” Solid-State Sensors, Actuators and Microsystems Conference, pp. 1485-1488, 2009.
[10] C. Chang, V.H. Tran, J. Wang, Y. Fuh and L.W. Lin, “Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency,” Nano letters, Vol. 10, pp. 726–731, 2010.
[11] D. Sun, C. Chang, S. Li and L.W. Lin, “Near-field electrospinning,” Nano letters, Vol. 6, pp. 839–842, 2006.
[12] C. Chang, K. Limkrailassiri and L.W. Lin, “Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns,” Applied Physics Letters, Vol. 93, No. 123111, 2008.
[13] J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of a direct write electrospun PVDF fiber,” Micro Electro Mechanical Systems, IEEE 23rd International Conference on, pp. 1163-1166, 2010.
[14] J. Pu, X.J. Yan, Y.D. Jiang, C. Chang and L.W. Lin, “Piezoelectric actuation of direct-write electrospun fibers,” Sensors and Actuators A: Physical, Vol. 164, pp. 131-136, 2010.
[15] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊圖書股份有限公司,1994年12月。
[16] J.F. Nye, “Physical properties of crystals,” Oxford, U.K.: Clarend Press, 1957.
[17] X. Chen, S. Xu and N. Yao, “1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, No. 6, pp. 2133-2137, 2010.
[18] Z.L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 14, Vol. 312, No. 5771, pp. 242-246, 2006.
[19] C. Xu and Z.L. Wang, “Compact hybrid cell based on a convoluted nanowire structure for harvesting solar and mechanical energy,” Advanced Materials, Vol. 23, pp. 873-877, 2011.
[20] D. Sun and J.K. Mills, “Control of a rotating cantilever beam using a torque actuator and a distributed piezoelectric polymer actuator,” Applied Acoustics, Vol. 63, pp. 885–899, 2002.
[21] M.J. Tseng and W.Z. Wu, “Analytical and experimental investigation on vibration control of piezoelectric structures,” Structural Vibration and Acoustics, Vol. 34, pp. 33–42, 1991.
[22] H.S. Tzou and C.I. Tseng, “Distributed piezoelectric sensor/actuator design for dynamic measurement control of distributed parameter system: a piezoelectric finite element approach,” Journal of Sound and Vibration, Vol. 138, pp. 17–34, 1990.
[23] Z. Li and P.M. Bainum, “Vibration control of flexible spacecraft integrating a momentum exchange controller and a distributed piezoelectric actuator,” Journal of Sound and Vibration, Vol. 177, pp. 539–553, 1994.
[24] D.J Spearritt and S.F. Asokanthan, “Torsional vibration control of a flexible beam using laminated PVDF actuators,” Journal of Sound and Vibration, Vol. 193, pp.941–956, 1996.
[25] S.F. Asokanthan and M. Gu, “Distributed control of flexible structure: theory and experiment,” Proceedings of Asia-Pacific Control Conference, pp.539–553, 1995.
[26] X. Chen, S.Y. Xu and N. Yao, “1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers,” Nano Letters, Vol. 10, No. 6, pp. 2133-2137, 2010.
[27] F. Li and W.T. Liu, “A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system,” Sensor, Vol. 10, pp. 994-1011, 2010.
[28] H Kawai, “The piezoelectricity of poly (vinylidene fluoride),” Japanese Journal of Applied Physics, Vol. 8, pp. 975-976, 1969.
[29] J.M. Haa, H.O. Limb and N.J. Jo, “Actuation behaviorof cp actuator based on polypyrrole and PVDF,” Advanced Materials Research, Vol. 29, pp. 363-366, 2007.
[30] T.T. Wang, J.M. Herbert and A.M. Glass, “The applications of ferroelectric polymers,” Chapman & Hall, New York, 1988.
[31] I.S. Elashmawi, E.M. Abdelrazek, H.M. Ragab and N.A. Hakeem, “Structural, optical and dielectric behavior of PVDF films filled with different concentrations of iodine,” Physica B: Condensed Matter, Vol. 405, pp. 94–98, 2010.
[32] M. Neidhofer, F. Beaume, L. Ibos, A. Bernes and C. Lacabanne, “Structural evolution of PVDF during storage or annealing,” Polymer, Vol. 45, pp. 1679–1688, 2004.
[33] Y. Peng and P. Wu, “A two dimensional infrared correlation spectroscopic study on the structure changes of PVDF during the melting process,” Polymer, Vol. 45, pp. 5295–5299, 2004.
[34] P. Sajkiewicz, A. Wasiak and Z. Goclowski, “Phase transitions during stretching of poly (vinylidene fluoride),” European Polymer Journal, Vol. 35, pp.423–429, 1999.
[35] Y. Chen and C.Y. Shew, “Conformational behavior of polar polymer models under electric fields,” Chemical Physics Letters, Vol. 378, pp. 142–147, 2003.
[36] R. Khajavi, M. Abbasipour, "Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers,"Scientia Iranica, Transactions F: Nanotechnology, vol. 19, pp. 2029-2034, 2012.
[37] D, Li. and Y, Xia, "Direct fabrication of composite and ceramic hollow nanofibres by electrospinning," Nano Letters, vol. 4, pp. 933-938, 2004.
[38] K. Nayani, H. Katepalli, C. S. Sharma, A. Sharma, S. Patil, and R. Venkataraghavan, "Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers,"Industrial & Engineering Chemistry Research, vol. 51, pp. 1761-1766, 2012.
[39] S. Zhan, D. Chen, and X. Jiao, "Co-electrospun SiO2 hollow nanostructured fibers with hierarchical walls,"Journal of Colloid and Interface Science, vol. 318, pp. 331–336, 2008.
[40] H. Na, P. Chen, S. C. Wong, S. Hague, and Q Li, "Fabrication of PVDF/PVA microtubules by coaxial electrospinning,"Polymer, vol. 53, pp. 2736-2743, 2012.
[41] 鴻隼企業有限公司,http://www.falco.xcom.tw/
[42] JEOL,http://www.jeol.co.jp/en/
[43] CRESSINGTON,http://www.cressington.de/html/cr108family.html
[44] 林晏良,以多訪口製備有序大面積滾筒式近場靜電PVDF壓電纖維,國立中山大學機械與機電工程學系碩士論文,2013。
[45] 劉宗鑫,以氧化鋅薄膜與聚偏氟乙烯奈米纖維為基材設計製作撓性壓電發電機,國立中山大學機械與機電工程學系博士論文,2012。
[46] R. C. Hibbeler,“MECHANICS OF MATERIALS”,PEARSON,2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.239.195
論文開放下載的時間是 校外不公開

Your IP address is 18.116.239.195
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code