Responsive image
博碩士論文 etd-0711114-173042 詳細資訊
Title page for etd-0711114-173042
論文名稱
Title
新型N倍壓整流電路及其應用
Research on a Novel N-times Voltage Multipler Rectifier and it’s Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-08-14
關鍵字
Keywords
高升壓比、分時多工、電壓應力、N倍壓整流電路、再生能源
High-Step-Up Converter, Renewable Energy Generation System, Voltage Stress, Time Division Multiplex, N-times Voltage Multiplier Rectifier
統計
Statistics
本論文已被瀏覽 5662 次,被下載 2
The thesis/dissertation has been browsed 5662 times, has been downloaded 2 times.
中文摘要
本文提出一新型N倍壓整流電路,以因應再生能源發電系統轉換器所需之高升壓比。此新型N倍壓整流電路之控制策略係基於分時多工原理,使輸出整流二極體與輸出電容在不同時間點進行能量傳遞及儲能。該電路架構與傳統倍壓整流電路架構相較下,該架構可降低輸出電容與輸出整流二極體的電壓應力,使各個輸出電容電壓幾乎可達到均壓,最後由輸出電容電壓疊加,讓輸出電壓達到N倍壓之成效。本文實際研製一新型全橋四倍壓轉換器,其規格為48V直流輸入、200V直流輸出、及額定功率150W,並模擬與傳統全橋四倍壓轉換器在電路各元件應力上的差異。由實驗與模擬結果可以看出,本文所提出之新型全橋四倍壓轉換器,其電路的輸出電容電壓應力確實小於傳統全橋四倍壓轉換器。本文亦模擬利用所提出之N倍壓整流電路於高升壓比的結果,由模擬結果可以看出,本文所提之新型N倍壓整流電路應可用於再生能源發電系統轉換器所需之高升壓比電路。
Abstract
This thesis proposes a novel N-times voltage multiplier rectifier for high step-up converters which can be used in renewable energy generation systems. This control strategy for the proposed N-times voltage multiplier rectifier circuit is designed based on Time Division Multiplex (TDM) principle. The TDM control strategy can be used to transfer and save energy for the output rectifier diodes and output capacitors at different time intervals. The circuit configuration and TDM control strategy can reduce voltage stress for the output capacitors and output rectifier diodes. Each voltage of output capacitor can almost achieve the purpose of equalizing voltage. The functionality of N-times output voltage can then be realized because of the superposition of the output capacitor voltages. A full-bridge quadrupler converter integrating the proposed rectifier with the specifications of the 48V DC input, 200V DC output, and rated power 150W is designed and implemented in this thesis. Experiments and simulations for the proposed full-bridge quadrupler converter and the conventional full-bridge quadrupler converter are conducted to compare the voltage stress of each circuit component. The results show that the voltage stress of output capacitors in the proposed full-bridge quadrupler converter is less than the voltage stress of output capacitors in the conventional converter. In addition, this thesis also simulates the applications of the proposed N-times voltage multiplier rectifier for high step-up conditions. Simulation results indicate that the proposed N-times voltage multiplier rectifier has great potential to be used in high step-up converters of renewable energy generation systems.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1研究背景 1
1-2 研究動機 2
1-3 論文大綱 4
第二章 升壓及倍壓轉換器電路架構 5
2-1升壓轉換器之介紹 5
2-1-1傳統升壓型轉換器 5
2-1-2三階升壓轉換器 10
2-1-3串接升壓轉換器 12
2-2高升壓比轉換器 14
2-2-1耦合電感應用於高升壓比轉換器 14
2-2-2開關電容應用於高升壓比轉換器 18
2-2-3電感與開關電容應用於高升壓比轉換器 19
2-2-4耦合電感與開關電容應用於高升壓比轉換器 21
2-2-5高升壓比交錯式升壓型轉換器 22
2-3倍壓轉換器介紹 25
2-3-1半波與全波倍壓整流電路 25
2-3-2四倍壓整流電路 26
第三章 新型N倍壓整流電路及其應用 28
3-1電路架構分析 28
3-2結合新型四倍壓整流電路之全橋轉換器操作原理分析 38
3-3新型全橋四倍壓轉換器電路模擬 45
第四章 電路設計與控制 57
4-1電路元件設計考量 57
4-1-1變壓器設計考量 57
4-1-2輸出整流二極體的設計考量 61
4-1-3輸出電容設計考量 61
4-1-4功率開關元件選擇 62
4-2電路參數設計 62
4-2-1變壓器設計實例 62
4-2-2輸出電容設計 64
4-3周邊電路設計 64
4-4控制晶片設計 67
4-4-1 dsPIC33FJ16GS504數位訊號控制器與MPLAB簡介 68
4-4-2程式設計流程介紹 72
第五章 實驗結果與分析 75
5-1實際量測 76
5-2傳統四倍壓整流架構模擬與比較 82
5-3多倍壓整流架構模擬 87
5-3-1新型六倍壓全橋轉換器電路模擬 87
5-3-2新型八倍壓全橋轉換器電路模擬 90
第六章 結論與未來展望 93
6-1結論 93
6-2未來展望 93
參考文獻 95
參考文獻 References
[1] Willis H. L. and Scott W. G, “Distributed power generation-planning and evaluation,” Marcel Dekker Inc., New York, 2000.
[2] Rabinowitz, M., “Power systems of the future. I,” IEEE Power Engineering Review, Vol. 20 (1), pp. 5-16, Aug. 2000.
[3] 許志義, “論分散型供電系統的發展趨勢及其對台灣的涵義,” 經濟情勢暨評論季刊, 2卷1期, 頁135-140, 台北, 1996。
[4] S. Jain, V. Agarwal, “A single-stage grid connected inverter topology for solar PV systems with maximum power point tracking,” IEEE Trans. Power Electron., vol. 22, no.5, pp. 1928-1940, Sept. 2007.
[5] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
[6] H. Kim, C. Yoon, and S. Choi, “An improved current-fed ZVS isolated boost converter for fuel cell applications,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 2008, pp. 593–599.
[7] K. I. Hwu and Y. T. Yau, “An interleaved ac–dc converter based on current tracking,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1456–1463, May 2009.
[8] C. M. Stein, J. R. Pinheiro, and H. L. Hey, “A ZCT auxiliary commutation circuit for interleaved boost converters operating in critical conduction mode,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 954–962, Nov. 2002.
[9] P.W. Lee, Y. S. Lee, D. K. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 787–795, Aug. 2000.
[10] X. Huang, X. Wang, T. Nergaard, J. S. Lai, X. Xu, and L. Zhu, “Parasitic ringing and design issues of digitally controlled high power interleaved boost converters,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1341–1352, Sep. 2004.
[11] G. Yao, A. Chen, and X. He, “Soft switching circuit for interleaved boost converters,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 80–86, Jan. 2007.
[12] J. L. Lin and C. H. Chang, “Small-signal modeling and control of ZVT-PWMboost converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 2–10, Jan. 2003.
[13] R. Gurunathan and A. K. Bhat, “ZVT boost converter using a ZCS auxiliary circuit,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 3, pp. 889–897, Jul. 2001.
[14] B. R. Lin and H. H. Lu, “Single-phase three-level PWMrectifier,” in Proc. IEEE APEC, 1999, pp. 63–68.
[15] B. R. Lin, H. H. Lu, and Y. L. Hou, “Single-phase power factor correction circuit with three-level boost converter,” in Proc. IEEE ISIE, 1999, pp. 445–450.
[16] M. T. Zhang, Y. Jiang, F. C. Lee, and M. M. Jovanovic, “Single-phase three-level boost power factor correction converter,” in Proc. IEEE APEC, 1995, pp. 434–439.
[17] G. Yao, H. He, Y. Deng, and X. He, “A ZVT PWM three level boost converter for power factor preregulator,” in Proc. IEEE PESC, 2006, pp. 1–5.
[18] H.Wu and X. He, “Single phase three-level power factor correction circuit with passive lossless snubber,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 946–953, Nov. 2002.
[19] L. huber and M. M. Jovanovic, “A design approach for server power supplies for networking applications,” in Proc. IEEE INTELEC, 2000, pp. 1163–1169.
[20] X. G. Feng, J. J. Liu, and F. C. Lee, “Impedance specifications for stable dc distributed power systems,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 157–162, Mar. 2002.
[21] T. F.Wu and T. H. Yu, “Unified approach to developing single-stage power converters,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 1, pp. 211–223, Jan. 1998.
[22] B. R. Lin and J. J. Chen, “Analysis and implementation of a soft switching converter with high-voltage conversion ratio,” Proc. IET-Power Electron., vol. 1, no. 3, pp. 386–394, Sep. 2008.
[23] S. Y. Tseng, S. H. Tseng, and J. G. Huang, “High step-up converter with partial energy processing for livestock stunning applications,” in Proc. IEEE APEC, 2006, pp. 1537–1543.
[24] S. Y. Tseng, S. H. Tseng, and J. Z. Shiang, “High step-up converter associated with soft-switching circuit with partial energy processing for livestock stunning applications,” in Proc. IEEE IPEMC, 2006, pp. 1–5.
[25] Q. Zhao and F. C. Lee, “High-efficiency, high step-up dc–dc converters,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 65–73, Jan. 2003.
[26] C. Y. Inaba, Y. Konishi, and M. Nakaoka, “High frequency PWM controlled step-up chopper type dc–dc power converters with reduced peak switch voltage stress,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 151, no. 1, pp. 47–52, Jun. 2004.
[27] F. A. Himmelstoss and P. H. Wurm, “Low-loss converters with high step-up conversion ratio working at the border between continuous and discontinuous mode,” in Proc. IEEE ICECS, 2000, pp. 734–737.
[28] T. F. Wu, S. Y. Tseng, J. S. Hu, and Y. M. Chen, “Buck and boost derived converter for livestock/poultry stunning applications,” in Proc. IEEE APEC, 2006, pp. 1530–1536.
[29] R. J. Wai, C. Y. Lin, and C. C. Chu, “High step-up dc–dc converter for fuel cell generation system,” in Proc. IEEE IECON, 2004, pp. 57–62.
[30] R. J.Wai and C. Y. Lin, “High-efficiency, high-step-up dc–dc converter for fuel-cell generation system,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 5, pp. 1371–1378, Sep. 2005.
[31] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “Boost converter with coupled inductors and buck–boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154–162, Jan. 2008.
[32] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “An improved boost converter with coupled inductors and buck–boost type of active clamp,” in Conf. Rec. IEEE IAS Annu. Meeting, 2005, pp. 639–644.
[33] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 151, no. 2, pp. 182–190, Mar. 2004.
[34] T. J. Liang and K. C. Tseng, “Analysis of integrated boost–flyback step-up converter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 2, pp. 217–225, Mar. 2005.
[35] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, “High boost converter using voltage multiplier,” in Proc. IEEE IECON, 2005, pp. 567–572.
[36] T. Dumrongkittigule, V. Tarateeraseth, and W. Khan-ngern, “A new integrated inductor with balanced switching technique for common mode EMI reduction in high step-up dc/dc converter,” in Proc. EMC-Zurich, 2006, pp. 541–544.
[37] H. C. Shu, “Design and analysis of a switched-capacitor-based step-up dc/dc converter with continuous input current,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 46, no. 6, pp. 722–730, Jun. 1999.
[38] G. Zhu and A. Ioinovici, “DC-to-DC converter with no magnetic elements and enhanced regulation,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 2, pp. 499–506, Apr. 1997.
[39] H. S. Chung, A. Ioinovici, and W. L. Cheung, “Generalized structure of bi-directional switched-capacitor dc/dc converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 50, no. 6, pp. 743–753, Jun. 2003.
[40] K. K. Law, K. W. Cheng, and Y. P. Yeung, “Design and analysis of switched-capacitor-based step-up resonant converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 52, no. 5, pp. 1998–2016, May 2005.
[41] F. Z. Peng, F. Zhang, and Z. Qian, “A magnetic-less dc–dc converter for dual voltage automotive systems,” IEE Trans. Ind. Appl., vol. 39, no. 2, pp. 511–518, Mar./Apr. 2003.
[42] M. Shen, F. Z. Peng, and L. M. Tolbert, “Multilevel dc–dc power conversion system with multiple dc sources,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 420–426, Jan. 2008.
[43] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun, “A family of single-switch PWM converters with high step-up conversion ratio,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 4, pp. 1159–1171, May 2008.
[44] E. H. Ismail, M. A. Al-Saffar, and A. J. Sabzali, “High conversion ratio dc–dc converters with reduced switch stress,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 2139–2151, Aug. 2008.
[45] R. J. Wai and R. Y. Duan, “High-efficiency dc/dc converter with high voltage gain,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 152, no. 4, pp. 793–802, Jul. 2005.
[46] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847–856, Jul. 2005.
[47] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986–1996, Sep. 2007.
[48] R. J.Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency dc–dc converter with high voltage gain and reduced switch stress,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 354–364, Feb. 2007.
[49] R. J.Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025–1035, Sep. 2005.
[50] R. Gules, L. L. Pfitscher, and L. C. Franco, “An interleaved boost dc–dc converter with large conversion ratio,” in Proc. IEEE ISIE, 2003, pp. 411–416.
[51] R. Giral, L. Martinez-Salamero, R. Leyva, and J. Maixe, “Sliding-mode control of interleaved boost converters,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 9, pp. 1330–1339, Sep. 2000.
[52] C. E. Silva, R. P. Bascope, and D. S. Oliveira, “Proposal of a new high step-up converter for UPS applications,” in Proc. IEEE ISIE, 2006, pp. 1288–1292.
[53] S. Y. Tseng, J. Z. Shiang, and Y. H. Su, “A single-capacitor turn-off snubber for interleaved boost converter with coupled inductor,” in Proc. IEEE PEDS, 2007, pp. 202–208.
[54] Y. Jang and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 169–175, Jan. 2004.
[55] Yi Zhao, Xin Xiang, Wuhua Li, Xiangning He, and Changliang Xia, “Advanced symmetrical voltage quadrupler rectifiers for high step-up and high output-voltage converters,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1622–1631, April. 2013.
[56] “SIMetrix/SIMPLIS電路模擬軟體,” Available: http://www.simetrix. co.uk/site/index.html
[57] E. S. Kim, K. Y. Cho, et. Al., “An improved soft switching PWM FB dc/dc converter for reducing conduction loss,” IEEE PESC Rec., vol.1, pp. 651- 656, Jun 1996.
[58] “Texas Instruments,“UC3842 PWM controller,” Unitrode products from texas instruments, pp. 3-363~3-372, 1999.
[59] 曾百由,“數位訊號控制器原理與應用,”宏友圖書開發股份有限公司,民國96年十一月。
[60] Microchip Technology Inc. “dsPIC33FJ06GS101/X02 and dsPIC33FJ16GS101/X04,” Available:http://www.microchip.com.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.37.68
論文開放下載的時間是 校外不公開

Your IP address is 18.224.37.68
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code