Responsive image
博碩士論文 etd-0711114-182343 詳細資訊
Title page for etd-0711114-182343
論文名稱
Title
孤立內波與表面波相互影響之研究
A study of the interaction between internal solitary wave and free surface wave
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
145
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-21
繳交日期
Date of Submission
2014-08-11
關鍵字
Keywords
類神經網路、渦流、孤立內波、ANSYS FLUENT、障礙物、溝槽
ANSYS FLUENT, Solitary internal waves, Neural Networks, Trench, Vortex, Obstacle
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
海洋內波現象近年來為海洋學者熱門研究的議題,且國內外從事內波研究,大都以現場觀測及實驗室試驗為主,但受限於天候、成本及安全性種種因素,較不易取得大量、可信及準確的資料,近年來由於高速處理器的進步及數值演算法的精進,使用數值模擬來探討海洋內波運動已成為熱門趨勢。
本研究針對 ANSYS FLUENT 之數值模式作精確度測定及分析,並利用ANSYS FLUENT 模擬與陳(2004)和郭(2005)相同試驗的內波傳遞過程,來驗證本研究數值模式的準確性、可信度及應用廣泛程度,隨後利用ANSYS FLUENT 數值模式模擬孤立內波之生成及內波通過時與表面波相互影響關係,以及探討通過不同底床地形時所形成的渦流效應與機制。經由數值模擬結果歸納與分析得知,海洋內波在傳遞的過程中,由於在交界面附近會有劇烈的水體交換混合運動,造成海水水體劇烈輻合、擴散和強流,使其在自由表層產生短暫流,進而發現內波波形與表面波波形起伏互為上下相反,且薄層水體的流速大於厚層水體的流速,內波水體之運動速度為非對稱分佈,又透過通過不同底床地形之模擬結果瞭解到局部的渦旋、紊流、壁面磨擦及流體黏滯性為內波能量產生消散的物理機制之一。
Abstract
In recent years, the phenomenon of ocean internal waves is a popular research topic of great concern to oceanographer, and Engaged in internal wave study at home and abroad, mostly in the field observations and laboratory tests based, but is subject to weather conditions, cost and safety factors, the more difficult to obtain a large number of , credible and accurate information, in recent years because of advances in high-speed processors and improved numerical algorithms, using numerical simulation to explore the motion of ocean internal waves has become a popular trend.
In this study, for accurate determination and analysis of numerical model of ANSYS FLUENT, and using ANSYS FLUENT to simulate the test of the internal waves propagation process is as same as chen(2004) and Guo(2005), to verify the accuracy of numerical models in this study, the degree of credibility and widely, then using ANSYS FLUENT numerical model simulate solitary internal waves generated and pass through relationships with free surface waves, and to explore the vortex effect and mechanism through different seabed topography formed. Summarized by the numerical simulation results and analysis that, Ocean internal waves during the transfer, because in the vicinity of the interface will be strong mixing water exchange movement, and causing severe convergence, diffusion and strong flow, it will produce a short free-surface flow, thereby found that internal wave-shaped and free surface wave-shaped undulate upside down, and the velocity distribution of the internal waves is asymmetric, but also through the simulation results of different seabed topography to understand the local vortex turbulence, wall friction and viscosity of the fluid to dissipate wave energy generated within the physical mechanism.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 xv
符號說明 xvi
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.2.1 現場觀測研究 5
1.2.2 實驗室實驗研究 8
1.2.3 數值模擬 10
1.3 研究目的 11
1.4 本文架構 12
第二章 數值模式與理論 13
2.1 ANSYS FLUENT 軟體簡介 13
2.1.1 網格處理方式 14
2.1.2 自由液面和流體界面處理方法 15
2.2 基本統御方程式 16
2.2.1 Navier-Stokes控制方程式 16
2.2.2 ANSYS FLUENT 控制方程式 17
2.3 初始條件與邊界條件 18
2.4 類神經網路簡介 19
2.4.1 倒傳遞類神經網路 20
2.4.2倒傳遞類神經網路架構 22
2.4.3倒傳遞類神經網路演算法 24
2.4.4倒傳遞類神經網路參數設定 28
第三章 數值方法與模式驗證 30
3.1 數值方法與模式操作過程 30
3.1.1 數值方法 30
3.1.2 QUICK格式 32
3.1.3 PISO演算法 32
3.2 數值模式精確度測定和分析 34
3.3 研究流程圖 39
3.4 數值模式與實驗室結果波形比對 40
3.4.1孤立內波傳遞及在單斜坡上反射之實驗結果與數值波形比較 40
3.4.2 孤立內波傳遞及受障礙物影響之實驗結果與數值波形比較 45
第四章 結果與討論 51
4.1孤立內波通過平坦海床時對表面波之流場及水位影響 51
4.2孤立內波通過海底山脊等突起地形所形成的渦流效應與機制 69
4.2.1上舉型孤立內波通過海底山脊時對內部流場之相關特性探討 69
4.2.2下沉型孤立內波通過海底山脊時對內部流場之相關特性探討 82
4.3孤立內波通過海底海溝等穴槽所形成的渦流效應與機制探討 94
4.4將ANSYS FLUENT模擬結果應用並開發類神經網路預測模式 109
第五章 結論與建議 118
5.1 結論 118
5.2 建議與未來展望 120
參考文獻 122
參考文獻 References
1. Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography. 15(12): 1625-1651.
2. Alpers, W.H., Wang-Chen and Lim Hock. (1997). Observation of internal waves in the Andaman Sea by ERS SAR. International Geoscience and Remote Sensing Symposium., Vol. 4, pp.1518-1520.
3. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25: 241-270.
4. Benjamin, T.B. (1967). Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29: 559-592.
5. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375.
6. C. Gary Koop and Gerald Butler. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., Vol. 112, pp.225-251.
7. C.Y. Chena, J.R.C. Hsu. (2005). Interaction between internal waves and a permeable seabed. Ocean Engineering. 32: 587–621.
8. Ekman, V.M. (1904). On dead-water, Norwegian North Polar Expedition , 1893-1896. Scientific Results. 5(15): 1-150.
9. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices.
10. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography. 8(1): 63-73.
11. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn. 3: 225-264.
12. Guo Y., J. K. Sveen, P. A. Davies, J. Grue and P. Dong. (2004). Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Environmental Fluid Mechanics. 4: 415–441.
13. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research. 20: 389-410.
14. Hsu, J.R.C. and Ariyaratnam, J. (2000). Pressure fluctuations and a mechanism for sediment suspension in swash zone. Proc. 27th Inter. Conf. on Coastal Eng., ASCE, Vol. 1, pp. 610-623.
15. Johnsona, D.R., Weidemann, A., and Pegau, W.S. (2001). Internal tidal bores and bottom nepheloid layers. Continental Shelf Research. 21: 1473-1484.
16. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 112: 225-251.
17. Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53.
18. Liu, A.K., Holbrook, J.R. and Apel, J.R. (1985). Nonlinear internal wave evolution in the Sulu Sea. J. Phys. Oceanography. 15: 1613-1624.
19. Liu, A.K., Chang, Y.S., Hsu, M.K. and Liang, N.K. (1998). Evolution of nonlinear internal waves in East and South China Seas. J. Geophys. Res. 103: 7995-8008.
20. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese).
21. Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002). Modeling wave runup with depth-integrated equations. Coastal Engineering., Vol. 46, pp. 89-107.
22. Lin, C., S. C. Chang, T. C. Ho, and K. A. Chang. (2006). Laboratory observation of a solitary wave propagating over a submerged rectangular dike. Journal of Engineering Mechanic, ASCE. 132(5): 545-554.
23. Madsen, O. S. and Mei C. C. (1969). The Transformation of Solitary Wave over an Uneven Bottom. J. Fluid Mech., Vol. 39, pp.781-791.
24. Maxworthy, T. (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res. 84: 338-346.
25. Muller, P. and X. Liu. (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr. 30: 532-549.
26. Moore, S. E., and Lien R. C. (2007). Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science., Vol. 23, pp.193-196.
27. Ming-Hung Cheng, John R.-C. Hsu. (2010). Laboratory experiments on depression interfacial solitary waves over a trapezoidal obstacle with horizontal plateau. Ocean Engineering. 37: 800–818.
28. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9.
29. N. Stashchuk, V. Vlasenko, and K. Hutter. (2005). Numerical modelling of disintegration of basin-scale internal waves in a tank filled with stratified water. Nonlinear Processes in Geophysics. 12: 955–964.
30. Ono, H. (1975). Algebraic solitary waves in stratified fluid. J. Phys. Soc. Japan. 39:1082-1091.
31. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science. 208 (43): 451-460.
32. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech. 469 (25): 161-188.
33. Thrope, S.A. (1975). The excitation, dissipation, and interaction of internal waves in the deep ocean. J Geophysical Research, 80(3): 328-338.
34. Thrope, S.A. (1987). On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech. 178: 279-302.
35. Tsai, C.P., Chen, H.B., and Hsu, R.C. (2001). Calculations of wave transformation across the surf zone. Ocean Engineering. 28: 941-955.
36. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793.
37. Vlasenko, V., and W. Alpers. (2005). Generation of secondary internal waves by the interaction of an internal solitary wave with an underwater bank, J. Geophys. Res., 110, C02019, doi:10.1029/2004JC002467.
38. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr. 26: 5-20.
39. 于勇、張俊明、姜連田,(2008),FLUENT入門與進階教程,北京理工大學出版社。
40. 王福軍,(2004),計算流體動力學分析-CFD軟件原理與應用,清華大學出版社。
41. 王瑋宏、鄭明宏、賴得旺、盧典育、許榮中,(2007),實驗室觀測孤立內波傳遞之粒子運動軌跡,第29屆海洋工程研討會論文集,第799-804頁。
42. 王瑋宏,(2008),孤立內波粒子運動軌跡實驗,碩士論文,國立中山大學海下科技暨應用海洋物理研究所。
43. 汪慶安,(2012),內波與三角形底床互制作用之數值模擬,碩士論文,國立高雄海洋科技大學海事學院海事資訊科技研究所。
44. 吳雲剛、陶明德,(2011),水波動力學基礎,復旦大學出版社。
45. 林呈、張錦鑲、何宗浚,(2006),孤立波通過對稱穴槽之渦流特性研究,第28屆海洋工程研討會論文集,第187-193頁。
46. 林呈、林昂、高明哲、謝世圳、許榮中、鄭明宏,(2007),應用可視化及PIV 技術於孤立內波通過直立平板之流場觀測,第29屆海洋工程研討會論文集,第815-820。
47. 陳信旭,(2004),孤立內波的傳遞及在單斜坡上反射之實驗研究,碩士論文,國立中山大學海洋環境及工程學系。
48. 陳震遠、許榮中、陳信旭、郭青峰、鄭明宏,(2005),內波於實驗室中形成的研究,第27屆海洋工程研討會論文集,第228-235頁。
49. 陳震遠、許榮中、郭青峰、陳信旭、鄭明宏,(2005),介面波在兩層流體系統中的運動特性,第27屆海洋工程研討會論文集,第236-243。
50. 陳俞任,(2012),以Flow-3D模擬內孤立波越過障礙物之行為,碩士論文,國立中山大學海洋環境及工程學系。
51. 郭青峰,(2005),孤立內波的傳遞及受障礙物影響之實驗研究,碩士論文,國立中山大學海下科技暨應用海洋物理研究所。
52. 張斐章、張麗秋、黃浩倫,(2003),類神經網路-理論與實務,東華書局。
53. 張明鴻,(2011),連續內波於擬大陸邊緣傳遞之實驗室實驗,碩士論文,國立中山大學海洋環境及工程學系。
54. 唐存勇,(2007),海面下的巨浪-內波研究與應用,國科會專題報告。
55. 許明光、劉安國,(2010),神秘的巨浪-南海內波,國家實驗研究院科技政策研究與資訊中心,科學發展電子期刊。
56. 黃煌煇、楊瑞源、伊格爾˙修爾干、郭平巧,(2011),海洋表面顯露內波形跡之研究,第33屆海洋工程研討會論文集,第525-530頁。
57. 傅科憲,(2007),非線性效應與混合層厚度對非線性內波傳播的影響,碩士論文,國立中山大學海洋物理研究所。
58. 鄭明宏,(2006),孤立內波於變動地形之數值模擬,碩士論文,中山大學海洋環境及工程學系。
59. 鄭明宏、許榮中、陳震遠、郭青峰、盧典育,(2006),數值模擬孤立內波通過海底山脊的演化,第28屆海洋工程研討會論文集,第199-204頁。
60. 賴耿辰,(2009),表面波與內波相互影響之實驗,碩士論文,國立中山大學海下科技暨應用海洋物理研究所。
61. 盧典育,(2007),變動密躍層厚度對孤立內波傳遞的影響實驗,碩士論文,國立中山大學海下科技暨應用海洋物理研究所。
62. 羅華強,(2011),類神經
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code